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Abstract: The present paper presents algebraic, analytical, approximate and iterative 

solutions and characteristics of oblique shock wave equation in a supersonic freestream. A 

closed-form solution of the cubic polynomial equation is having real and conjugate 

complex roots and associates with strong and weak shock wave. For known initial 

conditions and shock wave angle, upstream conditions can be obtained through careful 

application of the oblique shock wave table. But a numerical method is convenient as 

compared to oblique shock wave’s graphs or tables for preliminary designing of high-

speed vehicle. A numerical algorithm is developed based on the closed-form solution that 

can easily employ for rapid calculations of oblique shock wave angle. A computer 

program is written in FORTRAN language and compiled and executed on Linux to 

compute the oblique shock wave angle β. The exact solution of the oblique shock equation 

in terms of tanβ is obtained to compute oblique shock wave angle for given upstream flow 

conditions. The objective of the present study is to numerically evaluate shock wave angle 

and for the known entering Mach number. 

Keywords: algebraic, FORTRAN language, angle β, supersonic freestream. 
 

INTRODUCTION 

    The oblique shock wave theory essentially requires for designing a wave rider 

configuration and an air-breathing of high-speed vehicle [1]. The oblique shock wave 

angle β is needed as an explicit function of the upstream Mach number M1 and the flow 

deflection angle θ. It is commonly known as θ-β-M relationship of the oblique shock wave 

theory associated with compressible gas-dynamics. Ames Research Staff [2] has 

mentioned in their report that the analytical solution of the oblique shock equation cannot 

be arrived and tabulated values of θ-β-M.  

Thompson [3] has derived a cubic polynomial equation in term of sinβ of the oblique shock wave equation. 

Briggs [4] and Mascitti [5] have obtained analytical solution of the cubic equation. Naylor [6] has presented a solution of 

the shock-wave cubic equation that allows computation of the oblique shock wave angle without tables. Hartley et al. [7] 

have carried out real-time application of the exact and approximate solutions to the oblique shock wave equations. 

 

The cubic polynomial equation of the oblique shock wave equation in terms of tanβ had been derived by 

Wellmann [8] and the analytical solutions were published by Wolf [9]. An analytical solution was also obtained by 

Emanuel [10] and compared with the tabulated value of β by Anderson [11]. Bar-Meir [12] has discussed in detail the 

characteristics of the real and complex conjugate roots of the cubic polynomial equation of the oblique shock wave. 

 

Duo et al. [13], Powers [14] and Agnone [15] have discussed the approximate formula for weak and strong 

shock wave angles. Houghton and Brock [16] and Houghton and Carpenter [17] presented iteration method for the 

solution of cubic polynomial equation. Rudd and Lewis [18] have compared the closed-form solutions with the iterative 

scheme [16]. They concluded that the computer algorithm of the iterative method is too complicated and consuming 

more computer time as compared to the analytical solution.  

 

The above literature survey reveals that analytical, approximate and iterative methods are available to obtain the 

value of the oblique shock wave angle for given upstream flow conditions. The paper presents a closed-form solution for 

the shock wave angle based on the oblique shock wave theory. The roots are obtained using Cardan cubic polynomial 

equation [19, 20]. A computer program is developed based on the exact solution of the oblique shock theory which can 

easily implement in the preliminary design phase of an air-breathing and a wave rider high-speed vehicle.  
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Analytical Solution  

Figure 1 (a) delineates incoming streamline w1 with an angle β and outgoing streamline w2 with makes an angle 

(β – θ) with the normal shock.  The oblique shock can be considered as being formed by superimposing a flow parallel to 

the normal shock as shown in Fig. 1 (a) and remains constant as depicted in Fig. 1 (b). The velocities componentsVt1 and 

Vt2 are parallel ahead and behind the normal and oblique shock wave, respectively. Using Rankine-Hugonoit relations 

[11], Vt1 = Vt2 and remain constant for stationary shock. It makes the angle β with respect to the oblique shock wave and 

θ represents the flow deflection angle. u1 and u2 are velocity components perpendicular to the normal shock as depicted 

in Fig. 1 (a). The resultant velocities V1 and V2 are ahead and behind the oblique shock wave.  

 
                                                    (a)                                               (b) 

Fig-1: Flow through an oblique shock wave (a) normal shock (b) oblique shock 

 

The density ratio (ρ2/ρ1) across the normal shock is 
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Subscripts 1 and 2 refer side on which flow quantities to be evaluated and depicted in Fig.1 in a circle, γ is the 

ratio of specific heats. Substituting M1sinβ for M1 in Eq. (1a) to obtain the relation of flow variables for the oblique 

shock. Thus, all of the normal shock wave relations [11] can be converted to the oblique shock relation with substitution 

M1sinβ, M2 → M2sinβ and obtain the ratio of the density ratio across the oblique shock as   
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For small flow deflection angle θ it becomes 
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The relationship between the oblique shock wave angle β, the flow deflection angle θ across the oblique shock 

wave and upstream Mach number M1 [21] is  
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The above equation shows an implicit relation between θ-β-M. Eq. (2) becomes zero at β = π/2 and at β = µ = 

sin
-1

(1/M1), where µ denotes Mach wave angle. Within this range β is positive and must therefore have a maximum value 

of flow deflection angle θmax. There are two ways to express the polynomial equation of Eq. (2). Thompson [3] has 

obtained following expression for Eq. (2) as 

                                                         02sin4sin6sin  dcb                                            (3) 
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The Cardan equations yield three roots for sin
2
β from the foregoing equation. The direct computation of oblique 

shock wave properties with freestream Mach number and flow deflection angle as the independent variables is used to 

determine the strong and the weak shock wave angle. One of the root of the cubic equation is real and the solutions of Eq. 

(3) may written as   
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Where subscripts s and w represent the strong and the weak shock, respectively. If  = 0 then w  0; and if  = 

, then w < 0. Normal shock wave occurs just at θ = 0 and β = π. If θ > θmax, then no solution exists for a straight oblique 

shock wave. If θ < θmax, then there are two values of β for a given value of M1. The large value gives a strong shock 

solution where downstream M2 is subsonic. The small value gives the weak shock solution where M2 is supersonic except 

for a small region near θmax. In nature, the weak shock solution is favored and that one usually occurs. 

   

By writing another general form of Eq. (2) in a cubic relation for tanβ, Wellmann [8] derived following equation 
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Let us introduce a new variable tan = y and Eq. (5) becomes  
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Let us introduce another variable say 3/bxy  in Eq. (6) and reduced to  

                                                                      03  wvxx                                                               (7) 
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The three roots of Eq. (7) are as following 
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If D > 0, then one real root of Eq. (6) is 
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and the other roots depend on the magnitude of D. They can be expressed as 
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A numerical algorithm is written based on the magnitude of D. A computer program can be integrated for 

preliminary aerodynamic design and compiled in Linux or UNIX complier. The computer subroutine will compute the 

real root, the weak and the strong shock wave angle with the specific upstream Mach number and the flow deflection 

angle. The quadratic equation is also employed to solve the flow over a spinning sphere in ideal flow [22].  

 

Figure 2 is drawn with the help of Ref. [2] and can also obtain with the present numerical algorithm. The 

oblique shock wave shows several interesting characteristics that depend on values of β, θ and M. The point a, where the 

shock angle equals the Mach angle, is described by the equations of acoustics. On ac shock is said to be weak (dotted 

curve), and on cd it is said to be strong (solid line). At b, the θ = θmax(M1) is the maximum possibly by the oblique shock 

alone. 
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Shock alone 

Fig-2: Variation of shock wave angle with flow-deflection angle for various freestream Mach number [a (π/2), b 

(θmax), c (M = 1), d (µ∞)] 

 

On ab, the flow downstream of the shock is M2 < 1. On bd, it is M2 > 1. Point b is always to the left of c and 

very close to it. The value of β never differs by more than 4.5 deg., nor do the values of θ differ by more than 0.5 deg. 

Therefore, the flow through a weak shock nearly always keeps the speed of supersonic, and that through a strong shock 

always makes the speed subsonic. Since the range of θ angles for which a weak shock has subsonic flow behind it is less 

than 0.5 deg. A normal shock is always a strong shock; it corresponds to point d (M2 < 1). Weak and strong shocks are 

distinguished by dotted and continuous lines in Fig. 2.   

 

 
(a)                                                                             (b) 

Fig-3: Flow through an oblique shock wave (a) attached shock (b) detached shock 

[a (π/2), b (θmax), c (M = 1), d (µ1)] 
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    For any given M1, and θ < θmax, there are two β’s. The larger β is called strong shock solution, where M2 is 

subsonic. Two such points are labeled A and B. one of these A is associated with higher shock angle and thus has a higher 

normal Mach number, which means that it is stronger shock with a resulting higher-pressure ratio. The other B has a 

lower shock angle and thus is a weaker shock with a lower pressure rise across the shock. The lower β is called the weak 

shock solution, where M2 is supersonic except for a small region near θmax. If θ = 0, then β = π/2 (normal shock) or β → µ 

= sin
-1

 (1/ M1) (Mach wave) and βmin = µ. 

 

For β at large Mach number M1 → ∞ (θ then is small anyway) and 



2

1
 .  

For γ = 1, ρ2/ρ1 → ∞ and tan(β – θ) = 0 or β = θ 

For γ = 1.4, ρ2/ρ1 → 6 [Eq. 1 (b)] and tan β = β and tan(β– θ) = β – θ, or β = 1.2 θ 

If the θ is reduced to zero, we find the Mach angle μ∞ as 
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      The maximum possible flow deflection θ at an oblique shock is 45.6 deg. and corresponding shock angle β 

is 67.8 deg. for diatomic gas (γ = 1.4).  Thus, at the Mach angle µ = sin
-1

(1/M1), the gradient is  
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and deflection as M1 → ∞, it is  
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Shocks that are not at right angles to the oncoming flow are said to be oblique flows at M1 > 1. The upstream 

flow is necessarily M1 > 1 but the downstream flow may be either M2 < 1 or M2 > 1, depending on the values of M1 and β. 

An oblique shock may be attached or detached as shown in Fig. 3 (a) and (b), respectively. The upstream Mach number 

is M1 and the downstream is M2. The angle between the upstream flow and the shock is the shock angle β and the angle 

between the upstream and downstream is the deflection angle θ. For any given M1, there is a maximum θ beyond which 

the shock will be curved and detached. It can be observed from Fig. 3 (b) that at point (a) the flow is perpendicular to the 

shock wave and the properties of the flow governed by the normal shock relations. In moving from point (a) to (b), the 

shock weakens and the deflection of the flow behind the shock increases until a point of maximum flow deflection θmax is 

reached at (b). The Mach number behind the shock is subsonic up to point (c) where the Mach number just downstream 

of the shock is one. For the sake of clarity, we have marked symbols a, b, c and d which represent as a (π/2), b (θmax), c 

(M = 1), d (µ1) in Fig.2 and Fig. 3 (b).  

 

Iterative Solution 

    An iterative solution [23] for the cubic equation can also be used to calculate β. For any root (tanβ)k is written 

with respect to the coefficient of the polynomial of Eq. (6) as 

                                                                       abky 22                                                       (13) 

 

Where subscript k is the root of Eq. (6). This gives an upper bound for all the roots of the polynomial equation. All the 

coefficients of the polynomial equation are real. Then all the roots of the equation are real or the pairs of roots are 

complex conjugates. The Newton-Raphson method is simple to calculate the real root of the cubic equation. The iteration 

yields the real root y1 = tanβ at k = 1. Eq. (6) reduced the following quadratic equation  

 

                                                              011
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Solution of Eq. (11) can be obtained using following formula   



 

 

R.C. Mehta., Sch.  J. Eng. Tech., Feb 2018; 6(2): 64-70 

Available online: https://saspublishers.com/journal/sjet/home   

 70 

  

 

 

                                                    
   

4
142

1
1

ydyb
yby


                                            (15) 

 

The real root can be obtained by solving Eq. (6). The iteration scheme can be initiated with an initial value using 

Eq. (13). Other roots can be calculated by solving Eq. (15). The iterative scheme requires more computer time to obtain 

the oblique shock wave angle for the specific flow conditions and deflection angle. 

 

A similar flow features (attached with supersonic speed behind the oblique shock, detached normal shock, with 

a subsonic pocket behind it) function of θ can be found at a ramp and blunt body. The entropy rises across them, wave 

drag which is a form of wave drag. The entropy rise is largest where the shock is normal to the freestream flow (normal 

shock), and becomes smaller with decreasing inclination of the shock against the freestream (oblique shock).  

 

CONCLUSION 

    The paper compares the relative performance of analytical, approximate and iterative solutions of the oblique 

shock wave equation. The strong and weak shock wave angle can be calculated from the closed-form solution for given 

upstream flow conditions. The analytical solutions are useful and would lead to saving in computer time. A computer 

program for oblique shock wave is included that can be integrated for preliminary aerodynamic design. The numerical 

algorithm is efficient, simple and straightforward to implement in designing air-breathing and a wave rider at high-speed 

vehicle.  
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