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Abstract: Businesses should make production plans to continue their 

commercial life and to improve their profitability. Linear programming is one of 

the basic approaches used in solving production planning problems. However, 

deterministic structure of linear programming cannot express the randomness of 

variable coefficients that exists in many real production problems. In production 

planning, coefficients of variables and constraints such as prices or demand may 

not be in deterministic structure. In such cases, linear programming model gives 

inadequate results for the problem. Under uncertainty, stochastic programming 

approach comes to the fore as a method for solving production planning 

problems. It is possible to add uncertainty into to the model in decision-making 

process by using stochastic programming models. In solving phase of stochastic 

programming the basic approach is, converting the probabilistic structure of the 

problem into deterministic form and solving by mathematical methods. Chance 

constrained programming approach which is one of the stochastic programming 

techniques, offers the opportunity to examine random constraints in 

deterministic structure, according to specific statistical distributions. The study 

was conducted in the production system of an office products operating in Izmir. 

Firstly, the deterministic model of the production system is obtained. Then 

stochastic variables were defined in the model and the chance constrained 

programming was used for production planning of an office products 

manufacturing system which is still in operation. Deterministic and stochastic 

models were compared. It was found out, using proposed chance constrained 

model in production planning is valuable in terms of profit in long term. 

Keywords: Stochastic Programming, Chance Constrained Programming, 

Manufacturing System. 

 

INTRODUCTION 
Production planning problem can be defined as linear programming problem that is aimed to maximize profit or 

minimize cost under deterministic constraints. A problem can be modeled as linear programming model only if some 

certain assumptions are valid. One of the notable assumptions of linear programming (LP) is certainty. The certainty 

assumption requires that the model parameter such as objective function coefficient (cj), technological coefficient (aij) 

and right hand side (RHS) of a constraint (bi) must be known with certainty. However, real life problems are not only 

consist of parameters which are deterministic. If there is an uncertainty in any model parameter of the problem, the 

solution of LP model cannot be valid. If any parameter of the LP problem is random, it would be called stochastic 

programming (SP) problem [1]. If decision variables are determined on different stage of solution process in SP 

problems, it can be modeled with multi stage recourse models. SP problems that have decision variables to be determined 

at once, can be modeled with chance constrained programming (CCP) approach.  CCP can be defined as expressing 

random parameters with certain probability levels and presenting constraint and objective functions as probability 

functions [2]. 

 

Charnes and Cooper [3] introduced CCP in their pioneering study that they defined randomness with known 

probability distributions. In their study, they used different probability to express chance constraints. Miller and Wagner 

[4] examined random independent variables with joint probability constraint. Sengupta [6] used different probability 

distributions in CCP. Prekopa [5] examined random dependent variables with joint probability constraint. Hillier [7] 

proposed chance constrained integer programming (CCIP), with assigning only zero-one values to decision variables. 

Hamlen [8] used CCMIP in designing internal control system in management. Jagannathan [9] defined chance constraints 

by using information from sample unit. In the literature, a number of applications with various types of methods and 

problems can be found.  Charnes et al. [10] used CCP to calculate critical path of projects. Agnew et al. [11] used CCP in 
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portfolio selection problem. Cooper et al. [12] defined stochastic inputs and outputs with chance constraints in data 

envelopment analysis. Liu [13] used fuzzy logic in CCP. Hanasusanto et al. [14] reviewed wide classes of CCP which are 

robust. Jiang and Guan [15] studied distributional robust CCP in data driven setting. Pievatolo and Ruggeri [16] studied 

reliability of systems with missing data. Sakalli [17] combined CCP with simulated annealing algorithm. Ye and Xie [18] 

briefly analyzed stochastic modeling on reliable products.  

 

In our study, we used both chance constrained linear programming (CCLP) and chance constrained mixed 

integer programming (CCMIP) to solve the production planning problem of a manufacturer that products consumables 

goods for workplaces and offices. The objective function of the problem is to determine the optimum production plan for 

maximizing profit. Consumable office goods are defined as decision variables of the problem. Hence, unit sales profit of 

the goods are used as coefficient of objective function and known with certainty. Also technological coefficients have 

constant values. Operation time capacity for each operation and affordable amount of the raw materials are known 

exactly. Total manpower and maximum demand for each goods are chance constraints that are normally distributed. We 

determined confidence level of chance constraints with two different approaches. One of them is allocating confidence 

levels to RHS of demand constraints of each decision variables by their profits proportionally. In this way it is aimed to 

cover high profitable goods more than low profitable goods in solution. Second approach which is our main contribution 

to the CCP depends on using shadow prices of demand constraints from LP solution and allocating confidence levels 

proportionally to the decision variables. Average confidence level of demand constraints is considered similar in both 

approach in order to compare models. 

 

In the literature there are numerous works which is dealt with duality and CCP, some of the remarkable are as 

follows. Charnes and Cooper [19] used duality relations in CCP for evaluating risk and performance levels.  Charnes et 

al. [20] obtained dual CCP model from dual deterministic equivalents. Guo and Huang [21] used duality with both fuzzy 

and chance constraints in a two stage programming method. Moghaddam and Michelot [22] used shadow prices in 

determining joint cost allocation with LP. Bot et al. [23] investigated duality theorem in CCP. Ahmed et al. [24] 

proposed two new techniques to obtain dual values in CCP. 

 

CHANCE CONSTRAINED PROGRAMMING 

Basic assumption of CCP is to obtain solution under α (0,1) probability constraint in α confidence level. Chance 

term in CCP expresses the satisfaction probability of constraint. In solution process, stochastic parameter of constraint 

and objective functions are converted to corresponding deterministic parameter by using predetermined probability 

distribution and confidence levels, then problem can be solved by LP [25]. CCP provides flexibility by controlling the 

probability that a chance constraint may be violated [26]. CCP can be defined as allowing random constraint to restrict 

model by a confidence level of predetermined probability distribution. We can turn CCP into LP by adding expected 

value to confidence interval and then deterministic model can be easily solved with simplex method [27]. 

Chance constrained linear programming model is given as follows, 

 


n

j

jj xc =z  max(min)
1
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            ,  j=1,…,n 

   (   )   i=1,…,m 

 

At least one of the model parameters, such as ,   ,     and    have to be random variables. Predetermined 

probabilities can be expressed as   . Decision variables    are deterministic [28]. 

 

Stochastic parameters in Equation (1.1) must have known probability distribution with    confidence levels. 

Stochastic problem have to turn into deterministic one by using information of distribution.  In CCP problems we 

generally assume that parameters are normally distributed with known mean and variance. We can examine chance 

constraints with normally distributed parameters in different cases as follows 

 Only     coefficients are random variables, 

 Only    constants are random variables, 

 Only     coefficients are random variables, 

     and    are random variables, 

     and    are random variables, 
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    and    are random variables, 

    ,    and    are random variables, 

 

We can obtain last three of them from the first four cases. Hence, we examine the first four cases here [29]. 

 

Case 1: Only     coefficients are random variables, 

For all i and j let      normally distributed random variables with mean E (   ) and variance Var (   ) and also assume 

that     and     with covariance cov {   ,    }. Define a random variable ri as follows (Taha, 2000: 801), 
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 ,  i=1,…,m  

Coefficients ai1,…,ain  are normally distributed random variables and xj decision variables, then expected value and 

variance would be also normally distributed as follows, 
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here,   defines the distribution function of standard normal distribution. Let Kαi, as the value of standard normal 

variable, 
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In different notation we can express chance constraint as follows, 

iiii brVarKrE  )()(   

Similarly, ri can be replaced with aij, and we obtain deterministic nonlinear constraint corresponding to probabilistic 

linear constraints as follows, 
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if all aij are independent variables, then we obtain as follows,  
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Case 2: Only     constants are random variables, 

Let   , normally distributed random variables with mean E (  ) and variance Var (  ). It can be expressed as follows, 
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and ii p1   then, standard normal variable can be expressed as follows, 
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we obtain inequality as follows, 
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If we replace standard normal variable as follows, 
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this inequality only valid when following condition holds true as follows, 
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Probabilistic model corresponding to the deterministic model is as follows, 
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and can be solved by simplex method [28]. 

 

Case 3: Only     coefficients are random variables, 

Due to coefficient of decision variables in objective function    are normally distributed random variables, z objective 

function is also normally distributed with mean E(z). Hence, we can define objective function as follows,  
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and here, objective function with expected value would be a deterministic function [29]. 

 

Case 4:     and    are normally distributed 

Assume that random variable ri is normally distributed and defined as follows,  
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in another notation we have, 

0)var()(  iii rKrE    ,    i=1,…,m 

We obtain deterministic programming model corresponding to probabilistic model when ri  is replaced with random 

variable as follows, 
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then it can be solved by simplex method (Taha, 2000: 803). 

 

EXPERIMENTAL ANALYSIS 
8 different types of products are manufactured in an office supplies and products factory in İzmir, Turkey. The 

firm have 32 number of raw materials as input and 29 number of operations in production process. 23 employees are 

assigned at the operations. Firm have limited capacity for each operation in a week. An employee can work for maximum 

40 hours in a week. Firm does not want to manufacture above the demand levels for each product, due to shortage in 

depot place. Production under the demand levels cannot cause any problem for the firm, because they can easily supply 

them from outsource with no loss or profit. Firm wants to optimize their weekly production plan to maximize their profit 

under production constraints. In table 1 profit of each product per unit is given as follows, 

 

Table-1: Profit of Products Per Unit 

 Products X1   X2 X3 X4 X5 X6 X7 X8 

Unit Profit (TL) 14.0807 11.025 5.26138 23.0494 4.643 20.8212 0.9213 5.26138 
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In table 2 some of operations are listed. For example, operation 1 defines a cutting operation and required 

cutting times for each product. 

 

Table-2: Operation and Required Time 

i Products X1   X2 X3 X4 X5 X6 X7 X8 

1 Operation 1 1.723 115.2 0.716 0.716       0.0203 

2 Operation 2 0.716 57.6 0.716 0.716       0.1477 

 

In table 3, some of raw materials are listed. For example, Raw material 1 defines “Shring Pe Film” and amount 

of usage for each product.  

 

Table-3: Raw Material and Required Amount 

i Products X1   X2 X3 X4 X5 X6 X7 X8 

1 RawMaterial1 0.04 0.04     0.04 0.095    

2 RawMaterial2 0.016 0.005 0.016 0.016 0.005     0.016 

 

Demand for products are stochastic variables with normal distribution and in table 4, mean and variance of 

demand for each product per week are listed. 

 

Table-4: Mean and Variance Of Demand 

  X1   X2 X3 X4 X5 X6 X7 X8 

E(Ti) 750 1126 438 419 397 1010 995 158 

Var(Ti) 6400 10000 1600 1600 1600 10000 10000 400 

 

Total manpower capacity per week is normally distributed random variable. Its’ expected value and variance 

was calculated, E(P)= 662400 second, Var(P)=57600 second, respectively. Problem was modeled with variables and 

notations as follows, 

i products        i=1:8, 

j operations      j=1:29, 

h raw material   h=1:32, 

P  total manpower, 

aij required time for product i in operation j, 

bhi required amount of raw material k in production of product i, 

ci profit of product i, 

Ti demand of product i, 

Jj total capacity for operation j, 

Hh total amount of raw material h capacity, 

General form of the problem was modeled as closed form and the model is given as follows; 

Objective Function; 

    
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
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
n
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1

     h=1,…,p                                  (2.3) 

xi  ≤  Ti      i=1,…,n       (2.4) 

 

xi  ≥ 0   i=1,…,n                             (2.5) 

 

The goal of the model is to maximize profit. Equation (2.1) limits each operation time. Equation (2.2) restricts 

production with total manpower capacity. Equation (2.3) enforces production under each raw material capacity. Equation 
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(2.4) limits the manufacturing of products under demand level. Equation (2.5) ensures decision variables cannot have 

negative values. 

 

Model 1 and Model 2 

Firstly, we assumed all variables were deterministic in model 1. Then we assumed all variables were integers in 

model 2. Objective function and constraints of both model 1 and model 2 are same and as follows, 

Zmax=14.0807X1+11.025X2+5.26138X3+23.0494X4+4.643X5+20.8212X6+0.9213X7+5.26138X8  

 

Required time for each product in operations: Constraint Group 1 

1.723X1+115.2X2+0.716X3+0.716X4+0.0203X8 ≤ 57600 

0.716X1+57.6X2+0.716X3+0.716X4+0.1477X8 ≤ 28800 

1.111X1+0.555X2+1.11X3+1.11X4+0.0074X8 ≤ 28800 

1.111X1+0.555X2+1.11X3+1.11X4+0.3702X8 ≤ 28800 

0.117X1+0.117X2+0.117X3+0.117X4+0.0278X8 ≤ 115200 

6X1+0.173X2+1.2X3+1.2X4+0.175X8 ≤ 28800 

24X1+24X2+5.136X3+5.136X4+0.0444X8 ≤ 57600 

8.154X1+13X2+8.154X3+8.154X4+0.13X6+0.2778X8 ≤ 57600 

197.8X1+41.98X2+197.8X3+197.8X4+1.678X5+31.072X6+5.966X7+0.0222X8 ≤ 57600 

1.124X2 ≤ 28800 

0.172X2≤ 115200 

0.198X2 ≤ 28800 

0.404X2≤ 57600 

0.929X2≤ 28800 

0.922X2+0.32X6≤ 230400 

0.73X2 ≤ 115200 

0.498X2+0.533X6≤ 28800 

0.793X5+0.656X6 ≤ 57600 

0.925X5+1.557X6 ≤ 28800 

0.458X5≤ 28800 

0.175X5 ≤ 115200 

1.286X5+0.642X6 ≤ 28800 

0.493X7 ≤ 28800 

0.116X7+0.1667X8 ≤ 28800 

0.163X7 ≤ 28800 

0.326X7 ≤ 57600 

0.49X7 ≤ 57600 

0.0041X8 ≤ 28800 

0.2477X8 ≤ 28800 

 

Raw Material Capacity: Constraint Group 2 

0.04X1+0.04X2+0.04X5+0.095X6 ≤ 30000 

0.016X1+0.005X2+0.016X3+0.016X4+0.005X5+0.016X8 ≤ 30000 

0.008X1+0.0075X2+0.008X3+0.008X4 +0.008X8 ≤ 15000 

0.0056X1+0.0022X3+0.056X4 +0.0022X8 ≤ 25000 

5.85X1 ≤ 100000 

13X1 ≤ 100000 

0.4368X1+0.4368X3 +0.4368X8 ≤ 150000 

0.7X2 ≤ 100000 

27.5X2+275X6 ≤ 500000 

55X2+550X6 ≤ 1000000 

27.5X2+275X6 ≤ 500000 

1.18125X2 ≤ 25000 

0.87975X2 ≤ 10000 

0.04X3+0.04X4+0.65X7 +0.04X8 ≤ 80000 

0.4672X3+0.4672X4 +0.4672X8 ≤ 100000 

5.568X3+5.568X8  ≤ 100000 

60.72X4 ≤ 200000 

60.72X4 ≤ 200000 

0.30792X4 ≤ 10000 
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55X5 ≤ 100000 

55X5 ≤ 100000 

3.257X5 ≤ 50000 

250X6 ≤ 500000 

8.34X6≤ 100000 

0.0025X6 ≤ 10000 

0.05X7 ≤ 10000 

5X7 ≤ 100000 

5.1X7 ≤ 1000000 

5X7 ≤ 100000 

22X7 ≤ 300000 

2.5X7 ≤ 50000 

0.00675X7 ≤ 10000 

 

Total manpower constraint and demand constraints: Constraint Group 3 

241X1+258.157X2+216.059X3+216.059X4+5.315X5+34.91X6+7.554X7+1.5113X8 ≤ 662400 

X1 ≤ 750  

X2 ≤ 1126  

X3 ≤ 438  

X4 ≤ 419  

X5 ≤ 397 

X6 ≤ 1010 

X7 ≤ 995 

X8 ≤ 158 

 

In model 1 and model 2 we assumed total manpower constraint and demand constraints are deterministic and 

problem was solved by linear programming method. 

 

Model 3 and Model 4 
Objective function and constraint group 1 and 2 are same for models 1, 2, 3 and 4.  We assumed bi were 

normally distributed random variables in constraint group 3 and expressed them as chance constraints. Hence, models 3 

and 4 were created as CCLP and CCIP, respectively, as follows,  

Zmax=14.0807X1+11.025X2+5.26138X3+23.0494X4+4.643X5+20.8212X6+0.9213X7+5.26138X8  

Constraint Group 1: 



n

i

jiji Jxa
1

 

Constraint Group 2: 



n

i

hihi Hxb
1  

Constraint Group 3: 

P(241X1+258.157X2+216.059X3+216.059X4+5.315X5+34.91X6+7.554X7+1.5113X8 ≤ 662400) ≥ 0.05 

P(X1 ≤ 750) ≥ 0.10 

P(X2 ≤ 1126) ≥ 0.10 

P(X3 ≤ 438) ≥ 0.15 

P(X4 ≤ 419) ≥ 0.05 

P(X5 ≤ 397) ≥ 0.15 

P(X6 ≤ 1010) ≥ 0.05 

P(X7 ≤ 995) ≥ 0.20 

P(X8 ≤ 158) ≥ 0.15 

 

Here, in constraint group 3, first constraint corresponds to total manpower constraint and rest used for demand 

constraints. Confidence level of demand constraints was proportionally determined for products with their profits. We 

aimed to allow production of more profitable products by stretching their demand constraints. This strategy also 

traditionally used by firm in their production process. We used mean, variance and confidence level for each demand and 

obtained deterministic equivalents of chance constrained as follows,  

 

Constraint Group 3: 

241X1+258.157X2+216.059X3+216.059X4+5.315X5+34.91X6+7.554X7+1.5113X8 ≤ 662794.8 

X1 ≤ 852.8 
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X2 ≤ 1254.5 

X3 ≤ 479.44 

X4 ≤ 484.8 

X5 ≤ 438.44 

X6 ≤ 1174.5 

X7 ≤ 1079.5 

X8 ≤ 178.72 

 

Model 5 and Model 6: 
We proposed two new models with using shadow prices of demand constraints that we obtained by solving 

model 1. In model 5 and 6 we proportionally determined confidence level of demand constraints with their shadow prices 

in model 1 and rest of the other constrained were remained unchanged as follows, 

Zmax=14.0807X1+11.025X2+5.26138X3+23.0494X4+4.643X5+20.8212X6+0.9213X7+5.26138X8 

 Constraint Group 1: 



n

i

jiji Jxa
1

 

Constraint Group 2: 



n

i

hihi Hxb
1  

 

Constraint Group 3 

P(241X1+258.157X2+216.059X3+216.059X4+5.315X5+34.91X6+7.554X7+1.5113X8 ≤ 662400) ≥ 0.05 

P(X1 ≤ 750) ≥ 0.20 

P(X2 ≤ 1126) ≥ 0.20 

P(X3 ≤ 438) ≥ 0.20 

P(X4 ≤ 419) ≥ 0.20 

P(X5 ≤ 397) ≥ 0.05 

P(X6 ≤ 1010) ≥ 0.05 

P(X7 ≤ 995) ≥ 0.20 

P(X8 ≤ 158) ≥ 0.05 

and their deterministic equivalents as follows, 

 

Constraint Group 3 

241X1+258.157X2+216.059X3+216.059X4+5.315X5+34.91X6+7.554X7+1.5113X8 ≤ 662794.8 

X1 ≤ 817.6 

X2 ≤ 1210.5 

X3 ≤ 471.8 

X4 ≤ 452.8 

X5 ≤ 462.8 

X6 ≤ 1174.5 

X7 ≤ 1079.5 

X8 ≤ 190.9 

 

Models were coded and solved in MATLAB program. All models were solved and obtained results can be seen 

in table 5. Deterministic LP model 1 and deterministic IP model 2, were achieved objective function values as 29918 and 

29915, respectively. They have relatively lower objective values, as expected.  

 

We compared model 3 and 4 with model 5 and 6, respectively. In accordance to comparisons it can be seen as 

model 5 and 6 have higher objective function values than model 3 and model 4. In models 3 and 4 average probability of 

violating a chance constraint is 0.889, while in models 5 and 6 this average probability is 0.867. Obtained objective 

values under chance constraints with average probabilities can be seen as a proof that the determination of confidence 

level by using shadow prices like in models 5 and 6 are more effective than using objective coefficients for the same 

purpose as in models 3 and 4. Hence, firm would have better results in the long term with models 5 and 6. 

 

 

 

 

 

Table-5: Model Results 
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Model No LP Model 1 IP Model 2 CCLP Model 3 CCIP Model 4 CCLP Model 5 CCIP Model 6 

X1 0 0 0 0 0 0 

X2 499.59 499 485.14 485 484.162 484 

X3 0 0 0 0 0 0 

X4 0 0 0 0 0 0 

X5 397 397 438.44 438 462.8 462 

X6 1010 1010 1174.5 1174 1174.50 1174 

X7 766.78 770 0 3 0 3 

X8 158 158 178.72 178 190.9 190 

Max  Z 29918 29915 32779 32764 32945.56 32928 

 

DISCUSSION 
In real life problems assuming random variables as deterministic would cause problems such as obtaining 

unfeasible solutions with losing opportunities in long term. We can gain advantage of using information of probability 

distribution in problem and model would become more flexible and under control with confidence level. Determining 

confidence level is an important issue and related with problem and variable type in CCP. Model will be more reliable 

when confidence level of chance constraint is suitable.  

 

In models 3 and 4, we assigned confidence levels to chance constraints according to their objective coefficients. 

However, in models 5 and 6 confidence levels are determined by dual values that we obtained in model 1. It can be seen 

from model results that models which is based on dual values have better performance in determination of confidence 

levels. Using dual values for calculation of bi random variable can be seen as an better alternative. Corresponding 

confidence levels should be updated when stock levels are changed.  

 

As a result, in problems that have random parameters, using suitable probability distribution and confidence 

levels have better results than using only their expected values in short, medium and long terms. CCP provides seizing 

every possible opportunity and gaining advantage from encountered randomness in application stage of model. 
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