Scholars Journal of Applied Medical Sciences

Abbreviated Key Title: Sch J App Med Sci ISSN 2347-954X (Print) | ISSN 2320-6691 (Online) Journal homepage: <u>https://saspublishers.com/sjams/</u> **∂** OPEN ACCESS

Original Research Article

Nursing

The Impact of Educational Program on Nurse's Knowledge Regarding Nosocomial Infection

Abdulkareem Ali Qassim^{*}, Kadhim J. Awad Almadwah, Zainab Alag Hasan, Adian S. Muhammad

College of Nursing, University of Basra, Iraq

DOI: <u>10.36347/sjams.2020.v08i02.021</u>

| **Received:** 03.02.2020 | **Accepted:** 11.02.2020 | **Published:** 14.02.2020

*Corresponding author: Abdulkareem Ali Qassim

Abstract

Aims: 1) To investigate nurses' knowledge about nosocomial infections. 2) To evaluate the effectiveness of the educational program regarding nosocomial infections on nurses. Methodology: An educational program was carried out on a simple random sample of (50) nurses (from different educational levels) who work in different wards at Al-Basra Teaching Hospital. The project's instrument was a questionnaire including information about both demographic characteristics and nosocomial infection. The sample was involved in pre-and post-test on the program which lasted eight days. Results: The results show that the highest percentage (36%) of sample were aging nurses group (20-29) years, the lowest percentage (10%) of the sample were aged less than (20) years old. The highest percentage (54%) female, the lowest percentage (46%) was male. According to educational level the highest percentage (36%) were secondary school graduate, while the lowest percentage (8%) were college education. The highest percentage (30%) was grouped (1-5) years, while the lowest percentage (10%) of the sample was of the group more than (16) number years' work. The majority of nurses have deficit knowledge about etiology modes of transmission, spread nosocomial infections and symptoms. There was a high difference regarding knowledge between pre-test and post-test. *Conclusions:* The present findings show the effectiveness of the program through the highest percent of excellent for nurses' responses concerning nosocomial infection knowledge between pre- and post- program for the case group, and the majority of nurses' responses to the case group at post program had good knowledge concerning nosocomial infection than program. The majority of nurses have deficit knowledge about etiology modes of transmission, spread nosocomial infections and symptoms. There was a high difference regarding knowledge between pre-test and post-test. **Recommendations:** Majority nurses have deficit knowledge about nosocomial infection indicate the need to establish a national educational program to all health workers in Iraqi hospitals.

Keywords: Educational Program, Assessment, Knowledge, Nosocomial Infection, Questionnaire, Nurses, Basra, Iraq. **Copyright @ 2020:** This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.

INTRODUCTION

Nurses knowledge and awareness about nosocomial infection consider as corner stone in controlling such infection.

Nosocomial infections occur worldwide and affect both developed and resource-poor countries. Infections acquired in health care settings are the major causes of death and increased morbidity among hospitalized patients [1].

Nosocomial infections (hospital-associated infections) are those infections acquired during the patient's stay in hospital [2]. It is a major problem for patient wellbeing [3].

Millions of patients are affected by health careassociated infections worldwide each year [4].

At any time, over 1.4 million people worldwide suffer from infectious complications acquired in hospital [5].

Nurses are responsible for providing medications, dressing, sterilization, and disinfection. They are involved in more contact with patients than other health care workers. Therefore, they are more exposed to various nosocomial infections [6].

For this, knowledge of nursing staff regarding hospital-associated infections become more important in protecting hospitalized patient's life.

Standard precautions are designed to reduce the risk of acquiring occupational infection from both known and unexpected sources in the healthcare setting. Standard precautions have two objectives, namely to protect health care workers from percutaneous injuries and to prevent transmission of nosocomial infection [7].

The study aims to determine the awareness of nosocomial infection among nurses, to assess the existing knowledge of nursing regarding nosocomial infection, to evaluate the effectiveness of planned teaching programmed on nosocomial infection among nursing and to find out the association between the levels of knowledge and demographic variables.

METHODOLOGY

Ethics statement: The written informed consent was obtained from each participant and the study was approved by the head of the hospital.

Setting of the project: The program was carried out at Al-Basra Teaching Hospital in the medical department.

Sample of the study: Simple random sample of (50) nurses from different wards in Basra General Hospital that was distributed at the following: 1-Inrermediate nursing school (18), 2-Diploma (nurse or medical assistant)(15), 3-College (4), 4-Others (13).

Project Instrument

Questionnaire with two parts; part one consists of the demographic characteristics; age, gender, educational level, and years of experience, part two consists 20 items regarding the awareness and skills related to nosocomial infection was used to assess the level of awareness to nosocomial infection and its practical knowledge, the aspects were focused about the abbreviation of nosocomial infection sequential steps in nosocomial infection [1]. The questionnaire and the planned teaching was checked by six experts to test its validity and reliability.

Permission was taken from hospital administration. Time duration of the program lasted one week. Before involving the staff in the program, they were examined to evaluate their knowledge and practice about nosocomial infection (pre test). The questionnaire was presented to them in the classroom setting. The time taken to respond to the questionnaire was 45 minutes. Data was collected by administering a knowledge questionnaire on nosocomial infection and planned teaching program was introduced to them. On 8th day post-test was done by administering the same questionnaire.

STATISTICAL DATA ANALYSIS

Data of the present study were analyzed by using (SPSS) program for descriptive statistical procedure through the determination of frequency (f) and percentage (%). Mean score also was determined.

RESULTS

The impact of the program was measured by questionnaires administered before and after the intervention.

Age	F (%)	Pre-test		Post-tes	t
		I know	I don't know	I know	I don't know
Less than 20	5(10%)	38	62	81	19
20-29	18(36%)	164	196	301	59
30-39	14(28%)	103	177	233	47
40-49	7(14%)	68	72	124	16
More than 50	6(12%)	53	67	108	12
Total	50(100%)	426	574	847	153

Table-1: The association between nurse's knowledge and their ages

Table-1 shows that the highest percentage (36%) of the sample were aged (20-29) years, although

the lowest percentage (10%) of the sample were aged less than (20) years old.

Table-2:	The associat	ion between	nurse's l	knowledge ai	nd their gender

Gender	F	Pre-test		Post-tes	t
		I know	I don't know	I know	I don't know
Male	23(46%)	220	240	444	16
Female	27(54%)	249	291	494	46
Total	50(100%)	469	531	938	62

Regarding to sex, Table-2 shows that the highest percentage (54%) females, while the lowest percentage (46%) males.

Abdulkareem Ali Qassim et al., Sch J App Med Sci, Feb., 2020; 8(2): 463-467

Level of Education	F (%)	Pre-test		Post-tes	t
		I know	I don't know	I know	I don't know
Secondary nursing school	18(36%)	138	222	295	65
Institute	15(30%)	104	196	261	39
College	4(8%)	26	54	78	02
Other	13(26%)	83	177	247	13
Total	50 (100%)	351	649	881	119

141 • **TIL 3 T**

Regarding to the educational level, Table-3 shows that the highest percentage (36%) were

secondary school graduate, while the lowest percentage (8%) were college education.

Table 4. The according between	numeric importantes and	their record of employment
Table-4: The association between	i nui se s knowleuge anu	then years of employment

Years of employment	F (%)	Pre-test		Post-tes	t
		I know	I don't know	I know	I don't know
1<	10 (20%)	67	133	193	7
1-5	15 (30%)	57	243	265	35
6-10	6 (12%)	19	101	101	19
11-15	6 (12%)	22	98	109	11
16-20	5 (10%)	32	68	94	6
>20	8 (16%)	22	138	145	15
Total	50 (100%)	219	781	907	93

Regarding for a number of work years Table-4, the highest percentage (30%) with a group (1-5) years, while the lowest percentage (10%) of the sample were number years more than (16) number years' work.

No.	Term	Answer	Pre	-	Post	-test
			test			
			F	%	F	%
1	A nosocomial, or hospital-acquired infection is a new infection	I know	9	18	48	96
	that develops in a patient during hospitalization.	I don't know	41		2	
2	A nosocomial is identified at least forty-eight to seventy-two	I know	8	16	49	98
	hours following admission.	I don't know	42		1	1
3	Hospital infections are infections that are not present in the	I know	11	22	47	94
	patient at the time of admission to hospital.	I don't know	39		3	
4	There are two forms of nosocomial: Endogenous infection and	I know	12	24	48	96
	Exogenous cross-contamination.	I don't know	38		2	
5	Endogenous infection, self-infection, or auto-infection. The	I know	9	18	44	88
	causative agent of the infection is present in the patient.	I don't know	41		6	
6	Development of nosocomial during hospitalization from	I know	15	30	47	94
	physical, psychological and social changes of patient.	I don't know	35		3	
7	Exogenous cross-contamination followed by cross-infection	I know	8	16	46	92
	during the stay in hospital the patient comes into contact with	I don't know	42		2	
	new infectious agents.					
8	The infection may come in contact with instruments, containers,	I know	9	18	50	100
	linen etc.	I don't know	41		0	
9	The hands of health-care workers are the most frequent ways	I know	11	22	45	90
	transmitted of nosocomial infection	I don't know	39		5	
10	The elders or very young age increases the risk of nosocomial	I know	9	18	47	94
	infection	I don't know	41		3	
11	Invasive procedures increase the risk of nosocomial infection	I know	7	14	45	90
	х 	I don't know	43		5	
12	Nosocomial infections are responsible for approximately 44%	I know	8	16	41	82
	death per year in the world from hospital admission.	I don't know	42	-	9	
13	The area that more affected to the nosocomial infection that are	I know	2	4	41	82
	:urinary system, the lower part of the respiratory system,	I don't know	48	-	9	
	location of surgery, venous catheter, skin and soft tissue.				-	

© 2020 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India

Abdulkareem Ali Qassim et al., Sch J App Med Sci, Feb., 2020; 8(2): 463-467

14	The carrier mediator is one of the primary method to spread	I know	6	12	49	98
	infection where transmitted microbes it to the person exhibition	I don't know	44	1	1	
	by a substance contamination infection.					
15	The main way the spread of infection is the contact ,direct	I know	3	6	45	90
	contact, contact indirect, spray, air less than or equal to 5	I don't know	47		5	
	microns, carrier mediator and the mediator.					
16	To the spread of infection known as the interaction between	I know	5	10	44	88
	these elements are all on behalf of a series of infection or cycle	I don't know	45		6	
	spread of the disease from one person to last infection but with					
	the presence of elements of basic					
17	To reserve the transfer of infection by air immobilizer is the	I know	5	10	47	94
	isolation of the patient in the room with negative pressure.	I don't know	45		3	
18	Respiratory tract infection is the presence of symptoms of	I know	5	10	38	76
	satisfactory in the respiratory system with a two sings at least of	I don't know	45		12	
	the signs pathological the following during the presence in the					
	hospital (cough, sputum, purulent, the emergence of infiltrates a					
	new in - Rays - chest compatible with the infection.					
19	Urinary tract infection is the emergence of a result of positive	I know	4	8	38	76
	examined urine type or two types of pathogen at least 10 bacteria	I don't know	44		12	
	per ml in the case of the presence or the absence of symptoms of					
	clinical.					
	Infection threads started surgical is the presence of secretion or	I know	3	6	44	88
20	abscess or the spread if inflammation and cell in a place surgical	I don't know	47		4	
	cutting during the month of the procedure.					
Tota	l percentage				14.9	90.3

High difference for level of knowledge between pre test (14.9) & post test (90.3)

Table-6: Statistical data analys	sis for pre and j	post test program
----------------------------------	--------------------------	-------------------

Statistical Data Analysis	Pre-program	Post- program
Mean	20.40	35.80
Std. Deviation	8.041	3.411
Std. Error Mean	1.137	.482

There is a difference between pre and post- test regarding educational level of sample (positive outcome).

Table-7: Statistical Data Analysi	s (T-Test) Pre and Post- Program	
-----------------------------------	----------------------------------	--

Paired Samples T- Test						
Variables	Mean	Std. Deviation	Std. Error Mean	T-value	Df	Sig. (2-tailed
score_1 - score_2	-15.400	6.010	.850	18.11	49	0.00

DISCUSSION

Our study found that the highest percentage (36%) of the sample were aging nurses group (20-29) years, the lowest percentage (10%) of the sample were aged less than (20) years old. The highest percentage (54%) female, the lowest percentage (46%) was male. The highest percentage (36%) were secondary school graduate, while the lowest percentage (8%) were college education. The highest percentage (30%) was grouped (1-5) years, while the lowest percentage (10%) of the sample was of the group more than (16) number years' work.

According to table (6). Arithmetic mean for pre-test score is (20.40), which mean that nurses don't have sufficient knowledge about nosocomial infection. This result agrees with previous studies [7; 8; 9; 10; 11] that showed poor knowledge towards nosocomial infection.

These results may be because most of participants from secondary nursing school and others, also most of participants with years of experience (less than 1 year) and (1-5 years).

Arithmetic mean for post-test score is (35.88) and according to the Table-7. T-test between pretest and posttest score is (18.11), which mean that there is a significant difference between pre-test and post-test score. On the other hand, majority nurse have deficit knowledge about paragraphs (13,14,15,16,17,18,19,20) which are regarded about etiology modes of transmission, spread nosocomial infections and symptoms, and this agrees with previous study [1].

© 2020 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India

There was a high difference between knowledge between pre-test and post-test.

Our results agree with Jissir and Hassan regarding impact of educational program, the results of them showed the effectiveness of the program through the high percent of excellent for the nurses' responses concerning the nosocomial infection knowledge between pre and post test for the case group, and the majority of nurses' responses at post test had good knowledge concerning nosocomial infection than pre test [1].

Our results give a good indicator that the program achieved its objective in raising the level of knowledge and awareness among nurses about nosocomial infection.

CONCLUSION

- Awareness of nosocomial among nursing staff in Al-Basra Teaching Hospital is poor and needs to be improved.
- In general, the program had improved the level of knowledge for most nurses about nosocomial infection.

RECOMMENDATIONS

The majority of nurses have deficit knowledge about nosocomial infection indicate and that indicates the need for establishing a national educational program for all nurses working at hospitals.

References

- Al-Jubouri MB. Assessment of Nurse's Knowledge about Nosocomial Infection at Hospitals in Baghdad City. kufa Journal for Nursing sciences. 2014;4(1):198-203.
- 2. Alrubaiee G, Baharom A, Shahar HK, Daud SM, Basaleem HO. Knowledge and practices of nurses regarding nosocomial infection control measures in private hospitals in Sana'a City, Yemen. Safety in Health. 2017 Dec;3(1):16.
- 3. Amin TT, Al Noaim KI, Saad MA, Al Malhm TA, Al Mulhim AA, Al Awas MA. Standard

precautions and infection control, medical students' knowledge and behavior at a Saudi university: the need for change. Global journal of health science. 2013 Jul;5(4):114-125.

- Horan TC, Gaynes RP. Surveillance of nosocomial infections. In: Hospital Epidemiology and Infection. 3rd ed. Mayall CG, editor. Philadelphia, PA: Lippincott, Williams & Wilkins. 2004:1659-1702.
- 5. Hassan HB, Jissir SA. Effectiveness of an educational program on nurses knowledge about nosocomail infection: Case-control study. Kufa Journal for Nursing sciences. 2015;5(1):24-32.
- 6. Masavkar SP, Naikwadi AM. Knowledge, attitude and practice regarding nosocomial infections among general health practitioners and medical college students. Scholars journal of applied medical sciences. 2016;4(5F):1852-6.
- Saleem M, Vaish AK, Idris MZ, Sonkar AA, Agarwal J, Singh M, Singh SK, Srivastava VK. Pattern of Nosocomial infection among patients admitted in Medical and Surgical wards of a Secondary care hospital in north India-An epidemiological evaluation. Indian journal of community health. 2012 Dec 31;24(4):285-90.
- Sarani H, Balouchi A, Masinaeinezhad N, Ebrahimitabs E. Knowledge, attitude and practice of nurses about standard precautions for hospitalacquired infection in teaching hospitals affiliated to Zabol University of Medical Sciences (2014). Global journal of health science. 2016 Mar;8(3):193-198.
- 9. Shinde MB, Mohite VR. A study to assess knowledge, attitude and practices of five moments of hand hygiene among nursing staff and students at a tertiary care hospital at Karad. International Journal of Science and Research (IJSR). 2014;3(2):311-21.
- 10. WHO. World Health Organization Guidelines on Hand Hygiene in Health Care. First Global Patient Safety Challenge Clean Care is Safer Care. 2009.
- 11. WHO. Infection prevention and control in health care. 2018. http://www.who.int/csr/bioriskreduction/infection_ control/en/).