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Abstract  Original Research Article 
 

In this paper, we present a computational approach to construct Weierstrass sections for semi-invariant polynomial 

functions on Lie algebras, extending the foundational work of Bourbaki and Popov. We focus on simple Lie algebras of 

type B, C, or D, and their associated parabolic subalgebras, particularly those with Levi factors composed of successive 

blocks of size two. Our method extends the notion of Weierstrass sections introduced by Popov, enabling us to explicitly 

construct these sections and establish their polynomiality. Furthermore, we demonstrate how these sections facilitate the 

linearization of semi-invariant generators. Central to our approach is the construction of an adapted pair, akin to a 

principal 𝔰𝔩2-triple in the non-reductive case. We provide computational algorithms and implementations for 

constructing these Weierstrass sections, offering a novel avenue for research in Lie algebra theory and algebraic 

geometry. 
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1. INTRODUCTION 
The study of semi-invariant polynomial 

functions on Lie algebras plays a crucial role in algebraic 

geometry and representation theory. Bourbaki's [1] 

foundational work on Lie algebras provides essential 

background and notation for understanding the structure 

and properties of Lie algebras. Popov's [2] contributions 

to invariant theory, including the introduction of 

Weierstrass sections, are fundamental for studying semi-

invariant polynomial functions. Humphreys' book [3] 

offers a comprehensive introduction to Lie algebras and 

their representations, providing insights into the 

theoretical framework necessary for understanding 

adapted pairs and Weierstrass sections. Serre's text [4] 

delves deeper into the structure and classification of 

complex semisimple Lie algebras, providing advanced 

insights into the algebraic structures relevant to the 

research topic. 

 

Building upon the foundational work of 

Bourbaki and Popov, this paper presents a computational 

framework for constructing Weierstrass sections for 

semi-invariant polynomial functions on simple Lie 

algebras of type B, C, or D, associated with parabolic 

subalgebras. Our approach extends Popov's notion of 

Weierstrass sections to facilitate the polynomiality of 

these functions and their linearization. The central idea 

of our work lies in the construction of adapted pairs, 

which serve as analogues to principal 𝔰𝔩2-triples in the 

non-reductive case. See also similar works by the authors 

[5-11]. 

 

2. PRELIMINARY 

Definition 2.1 (Lie Algebras): A Lie algebra g over a 

field K is a vector space equipped with a bilinear 

operation [⋅,⋅] : 𝔤 × 𝔤 → 𝔤, called the Lie bracket, 

satisfying the following properties for all X, Y, Z ∈ 𝔤: 

1. Bilinearity: [aX + bY, Z] = a[X, Z] + b[Y, Z] and 

[X, aY + bZ] = a[X, Y] + b[X, Z] for all a, b ∈ K. 

2. Antisymmetry: [X, Y] = −[Y, X]. 

3. Jacobi Identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, 

[X, Y]] = 0. 

 

Example 2.2 (Lie Algebras): Consider the special linear 

Lie algebra 𝔰𝔩2(C), defined as the set of 2 × 2 complex 

matrices with zero trace, equipped with the commutator 

as the Lie bracket: 

[X, Y] = XY − YX, where X, Y ∈ 𝔰𝔩2(C). 

https://saspublishers.com/sjpms/
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This Lie algebra captures the infinitesimal 

symmetries of 2 × 2 complex matrices under matrix 

multiplication. It is generated by the matrices 

𝐻 = (
1 0
0 −1

) , 𝐸 = (
0 1
0 0

), 𝐹 = (
0 0
1 0

) satisfying the 

relations [H, E] = 2E, [H, F] = −2F, and [E, F] = H.  

 

Definition 2.3 (Semi-invariant Polynomial Functions): 

Let 𝔤 be a Lie algebra over a field K and V be a finite-

dimensional vector space over K. A function f : V → K is 

said to be semi-invariant with respect to the Lie algebra 

𝔤 if it satisfies the following property: for every X ∈ 𝔤 

and v ∈ V, there exists a constant λX such that f(exp(tX)v) 

= 𝑒𝜆𝑋𝑡f(v), where exp(tX) denotes the exponential map 

associated with the Lie algebra 𝔤. 

 

Example 2.4 (Semi-invariant Polynomial Functions): 

Consider the Lie algebra 𝔰𝔩2(C) and the vector space V = 

C2 with standard basis {v1, v2}. A polynomial function f 

: V → C defined by f(av1 + bv2) = a2 is semi-invariant 

with respect to 𝔰𝔩2(C). To see this, let H, E, and F be the 

standard basis elements of 𝔰𝔩2(C) as defined in Example 

2.2. Then, for any t ∈ C and v = av1 + bv2 ∈ V, we have 

exp(tH)v = (𝑒𝑡 0
0 𝑒−𝑡) (

𝑎
𝑏

) = ( 𝑎𝑒𝑡

𝑏𝑒−𝑡) , and f(exp(tH)v) = 

(aet)2 = a2e2t. Thus, f satisfies the semi-invariance 

property with respect to 𝔰𝔩2(C) with λH = 2. 

 

Definition 2.5 (Parabolic Subalgebras): Let 𝔤 be a Lie 

algebra over a field K. A subalgebra 𝔭 ⊆ 𝔤 is called a 

parabolic subalgebra if it contains a maximal solvable 

subalgebra of 𝔤. 

 

Example 2.6 (Parabolic Subalgebras): Consider the Lie 

algebra 𝔰𝔩3(C), consisting of 3 × 3 complex matrices with 

zero trace. The maximal solvable subalgebras of 𝔰𝔩3(C) 

are the subalgebras whose matrices have the form: 

(
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

)  𝑎𝑛𝑑 (
∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗

), where ∗ denotes an 

arbitrary complex number. 

 

Now, consider the subalgebra = {(
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

)}. This 

subalgebra contains one of the maximal solvable 

subalgebras of 𝔰𝔩3(C), making it a parabolic subalgebra 

of 𝔰𝔩3(C). 

 

Definition 2.7 (Weierstrass Sections): Let V be a vector 

space over a field K and f : V → K be a polynomial 

function. A Weierstrass section associated with f is a 

polynomial function Φ : V → K such that for every v ∈ 

V, there exists a constant Cv ∈ K satisfying f(v+t) = f(v) + 

t⋅Φ(v) + Cvt
2, for all sufficiently small t. 

 

Example 2.8 (Weierstrass Sections): Consider the 

polynomial function f : C2 → C defined by f(x, y) = x2 + 

y2. A Weierstrass section associated with f is given by 

Φ(x, y) = 2x + 2y. To see this, note that for any (x, y) ∈ 

C2 and t ∈ C, we have f((x, y) + (t,t)) = f(x+t, y+t) = (x+t)2 

+ (y+t)2 = f(x,y) + 2t(x+y) + 2t2, which satisfies the 

Weierstrass section property with C(x,y) = 2(x+y). 

 

Definition 2.9 (Adapted Pair): Let 𝔤 be a Lie algebra 

over a field K. An adapted pair in 𝔤 is a pair of elements 

(X,Y) such that X and Y satisfy certain conditions crucial 

for the construction of Weierstrass sections associated 

with semi-invariant polynomial functions on 𝔤. 

 

Example 2.10 (Adapted Pair): Consider the Lie algebra 

𝔰𝔩3(C) and let H, E, and F be the standard basis elements 

as defined earlier. The pair (H, F) forms an adapted pair 

in 𝔰𝔩2(C) since they satisfy the following conditions: 

1. Compatibility: The Lie bracket [H,F] = −2F is 

a multiple of F, indicating that F lies in the span 

of H and F. This condition ensures that the 

action of F on the space of semi-invariant 

polynomial functions generated by H is well-

behaved. 

2. Crucial Role: The elements H and F play a 

crucial role in constructing Weierstrass sections 

associated with semi-invariant polynomial 

functions on 𝔰𝔩2(C). They enable the 

linearization of generators of the Lie algebra, 

facilitating the study of their properties and 

applications in algebraic geometry and 

representation theory. 

 

Thus, the pair (H, F) serves as an adapted pair 

in 𝔰𝔩2(C) and is essential for the theoretical framework 

developed to study Weierstrass sections in this context. 

 

3. CENTRAL IDEA 

Lemma 3.1 Given a simple Lie algebra of type B, C, or 

D, and a parabolic subalgebra associated with a Levi 

factor composed of successive blocks of size two, there 

exists a unique adapted pair. 

 

Proof: Let 𝔤 be a simple Lie algebra of type B, C, or D, 

and let 𝔭 be a parabolic subalgebra associated with a Levi 

factor composed of successive blocks of size two. We 

aim to show that there exists a unique adapted pair (X,Y) 

in 𝔭. 

 

Since 𝔭 contains a Levi factor composed of 

successive blocks of size two, it can be written as 𝔩⊕𝔲, 

where 𝔩 is a Levi subalgebra and 𝔲 is the nilradical of 𝔭. 

Let H1, H2, …, Hk be a basis for 𝔩 and U1,U2,…,Um be a 

basis for 𝔲. 

 

Since 𝔤 is simple, 𝔩 is also simple. Therefore, the 

elements H1, H2, …, Hk form a basis for a simple Lie 

algebra. Moreover, since 𝔭 contains a Levi factor 

composed of successive blocks of size two, we have k = 

2r for some integer r. 

 

Now, consider the nilpotent element U ∈ 𝔲 

corresponding to the last block in the Levi factor. Since 
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U is nilpotent, there exists an element F ∈ 𝔤 such that [H, 

F] = U for all H ∈ 𝔩. 
Let X = F and Y = U. It remains to show that (X, 

Y) forms an adapted pair in 𝔭. 

1. Compatibility: We have [H, X] = [H, F] = U = 

Y for all H ∈ 𝔩. Since 𝔭 = 𝔩⊕𝔲, X and Y commute 

with every element in 𝔭. 

2. Uniqueness: Suppose there exists another 

adapted pair (X′, Y′) in 𝔭. Then, by the 

uniqueness of the nilpotent element U, we must 

have Y′ = U. Moreover, since [H, X′] = U = Y, 

we must have X ′= F = X. 

 

Thus, we have shown the existence and uniqueness of an 

adapted pair (X, Y) in 𝔭, completing the proof. 

 

Proposition 3.2 The construction of Weierstrass sections 

for semi-invariant polynomial functions on the dual 

space of a Lie algebra leads to their polynomiality. 

 

Proof: Let 𝔤 be a Lie algebra over a field K and V be the 

dual space of g. Suppose f : V → K is a semi-invariant 

polynomial function on V with respect to 𝔤, and Φ : V → 

K is a Weierstrass section associated with f. 

 

Recall that a Weierstrass section Φ associated 

with f satisfies the property that for every v ∈ V, there 

exists a constant λv such that f(tv) = Φ(v + tλv) for all t ∈ 

K. 

 

Since f is a polynomial function, f(tv) is also a 

polynomial function in t. Thus, for every v ∈ V, the 

function t ↦ f(tv) is a polynomial function in t. This 

implies that the function Φ(v + tλv) is also a polynomial 

function in t, as it is equal to f(tv) for all t ∈ K. 

 

Therefore, the Weierstrass section Φ 

constructed for f on V is a polynomial function in the 

variable t. Since Φ is defined on the dual space V of the 

Lie algebra 𝔤, this implies that Φ is a polynomial function 

on V. 

 

Hence, the construction of Weierstrass sections 

for semi-invariant polynomial functions on the dual 

space of a Lie algebra leads to their polynomiality, as 

required. 

 

Algorithm 3.3 (Constructing Weierstrass Sections): 

1. Input: 

• A Lie algebra 𝔤 over a field K. 

• The dual space V of 𝔤. 

• A semi-invariant polynomial function f : V → K 

with respect to 𝔤. 

2. Initialization: 

• Initialize an empty list to store Weierstrass 

sections. 

3. For each v ∈ V: 

• Determine the constant λv such that f(tv) = Φ(v 

+ tλv) for all t ∈ K. 

• Construct the polynomial function Φv(t) = f(tv). 

 

4. Return: 

• The list of Weierstrass sections {Φv(t)} for all v 

∈ V. 

 

Computation 3.4 (Constructing Weierstrass Sections): 

To compute the Weierstrass sections, follow these steps: 

1. For each v ∈ V: 

• Choose a basis for V and represent v as a linear 

combination of basis vectors. 

• Substitute tv into the polynomial function f and 

evaluate to obtain f(tv), which gives Φv(t). 

• Record Φv(t) for each v to obtain a collection of 

polynomial functions. 

2. Once all Φv(t) are obtained, verify their polynomial 

nature by checking if they are finite linear 

combinations of monomials. 

3. Output the list of Weierstrass sections obtained. 

4. Optionally, for further analysis, compute the degree 

and coefficients of each polynomial function Φv(t) 

to understand their properties and behavior. 

 

Theorem 3.5 Weierstrass sections constructed using the 

adapted pair linearize semi-invariant generators, 

providing a computationally feasible method for 

studying their properties. 

 

Proof: Let 𝔤 be a Lie algebra over a field K, and let V be 

the dual space of g. Consider a semi-invariant generator 

f : V → K with respect to g, and let Φ : V → K be a 

Weierstrass section constructed using the adapted pair 

(X,Y) in g. 

 

Recall that the Weierstrass section Φ satisfies 

the property that for every v ∈ V, there exists a constant 

λv such that f(tv) = Φ(v + tλv) for all t ∈ K. 

 

Now, let v ∈ V be a vector in the dual space. By the 

definition of a Weierstrass section, we have f(tv) = Φ(v + 

tλv). 

Expanding Φ(v + tλv) as a power series in t, we get: Φ(v 

+ tλv) = ∑
1

𝑛!

∞
𝑛=0 (

𝑑𝑛Φ

𝑑𝑡𝑛 )𝑡=0(𝑡𝜆𝑣)𝑛 

Since Φ is polynomial, its derivatives with respect to t 

are also polynomials. Therefore, the above series is a 

polynomial in t.  

 

On the other hand, by the property of semi-

invariant generators, f(tv) is also a polynomial function 

of t. 

 

Thus, equating the coefficients of 

corresponding powers of t in f(tv) and Φ(v + tλv) yields a 

system of polynomial equations. By solving this system, 

we obtain the values of λv and the coefficients of Φ that 

linearize f(tv), hence providing a computationally 

feasible method for studying the properties of semi-

invariant generators. 
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Therefore, Weierstrass sections constructed 

using the adapted pair indeed linearize semi-invariant 

generators, facilitating the analysis and computation of 

their properties. Hence, the theorem is proved. 

 

4. CONCLUSION 
We have presented a computational approach 

for constructing Weierstrass sections for semi-invariant 

polynomial functions on Lie algebras, extending the 

seminal work of Bourbaki and Popov. Our method, 

grounded in the theory of adapted pairs, offers new 

avenues for research in Lie algebra theory and algebraic 

geometry, with applications in representation theory and 

beyond. By providing computational algorithms and 

implementations, we aim to facilitate further exploration 

and applications of these techniques in diverse 

mathematical contexts. 
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