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Abstract  Review Article 
 

In practical warehouse scenarios, route optimization is an important factor due to its large impact on the cost and time 

efficiency of a warehouse. This directly affects the overall productivity of a warehouse. Many algorithms have been 

developed to address this issue- the most commonly used in the industry include the A* algorithm and Dijkstra’s 

algorithm. While most provide appropriate usage in static ware house environments, many often fall short in dynamic 

warehouses, where they are unable to efficiently adapt to changing layouts and obstacles without compromising on time 

and cost efficiency. This study proposes a lattice-based two-dimensional algorithm designed to navigate warehouses 

while also avoiding obstacles efficiently. Employing this algorithm can result in substantial cost reductions, as it 

optimizes travel distances and resource allocation. Moreover, the algorithm enhances the time efficiency significantly 

by reducing order fulfillment. This research offers a practical solution to a persistent challenge in modern warehouse 

logistics. The effectiveness of the proposed algorithm suggests its potential to revolutionize the industry’s approach to 

route optimization.  
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1. INTRODUCTION 
With the rise of the internet, there has been a 

rapid surge in the e-commerce sector. Online shopping 

in particular has grown exponentially due to factors like 

wider product selection, convenience and better pricing. 

This growth has increased the demand for more efficient 

and productive warehouse operations to meet the 

growing customer expectations for fast and reliable 

delivery. With this, new entrepreneurs have entered the 

industry, making warehouse logistics a highly 

competitive sector. Warehouses face constant pressure to 

optimize processes and reduce costs to remain profitable. 

Because of this rise in competitiveness, newer problems 

came to being. One of the most critical factors affecting 

the overall productivity of a warehouse is the storage and 

retrieval of goods. Many traditional methods are slow, 

inefficient, and prone to a lot of errors. Most modern 

warehouses now address these challenges by utilizing 

automated guided vehicles (AGVs) to streamline storage 

and retrieval operations. The integration of AGVs and 

warehouse robots has significantly enhanced 

transportation speed and precision. These automated 

systems can improve efficiency, reduce labor costs, and 

minimize picking errors. Therefore, optimizing path 

planning for these automated robots can greatly affect the 

operational efficiency of warehouses. However, 

navigating warehouse environments optimally remains a 

key challenge as they introduce complexities that 

traditional pathfinding algorithms struggle to handle. 

This can include obstacles- such as unpredictable 

inventory placement, forklifts and personnel- 

computational efficiency and time taken. Existing 

pathfinding algorithms often fall short in these dynamic 

environments. This paper proposes a novel two-

dimensional grid model and an optimized algorithm 

specifically designed to address these challenges and 

enable efficient robot navigation in dynamic warehouses.  

 

Researchers over the past decade have 

developed several methodologies to address this 

persisting problem. The most popular algorithms used 

today include the Dijkstra’s and A* algorithm. Dijkstra’s 

algorithm [1] works by transforming the warehouse 

layout into a graph. Each aisle intersection becomes a 

node, and paths between them become edges with 

weights representing travel time or distance. The 

algorithm then iteratively explores these connections, 

prioritizing unvisited nodes with the lowest total travel 

distance from the starting point. This efficiently 

determines the shortest path for a robot or picker to reach 
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any destination within the warehouse. The algorithm 

guarantees finding the optimal path but can be 

computationally expensive for large and complex 

warehouses. Additionally, it struggles to adapt to 

dynamic changes like moving obstacles [5]. The A* 

search algorithm builds upon Dijkstra’s algorithm by 

incorporating a heuristic function to prioritize 

exploration towards the goal. A heuristic function is an 

informed estimate of the cost (distance, time, etc.) to 

reach the goal from a particular point in the environment. 

These estimates help the algorithms prioritize exploring 

more promising paths that are likely to lead to the goal 

faster. For example, in a two dimensional grid 

representing a warehouse, a common heuristic function 

might be the Manhattan distance between a cell and the 

goal location [4]. This estimates the minimum number of 

horizontal and vertical steps required to reach the goal, 

ignoring obstacles. Heuristics play a crucial role in path 

selection by directing the search towards more efficient 

paths. Algorithms like A* use the total cost (combination 

of movement cost and heuristic estimate) to evaluate 

neighboring cells and prioritize those with a lower total 

cost. This strategy helps them focus their search on 

promising areas and avoid exploring irrelevant parts of 

the environment. Therefore, this is similar to the method 

the proposed algorithm builds up on. This leads to faster 

path finding, especially in complex environments. 

However, the traditional A* algorithm can still be 

computationally expensive for very large warehouses 

[3].  

 

There have been many other approaches to this 

problem as well. For instance, the research by Yang et 

al., [6] introduces the concept of the largest convex 

polygon (LCP) to illustrate the shortest path to traverse 

all goods locations in an ideal condition. This involves 

getting an initial node, establishing a Cartesian 

coordinate system, and then adding nodes based on their 

positions relative to the initial node. This method could 

potentially improve vehicular navigation due to its 

shown reduction in time complexity and path length, but 

the method does not consider the real-world complexities 

which impacts its applicability in practical scenarios. In 

their study, Roodbergen et al., [2] propose a branch-and-

bound algorithm adapted from the Travelling Salesman 

Problem (TSP) to identify the shortest path within a 

parallel aisle warehouse. This approach is specifically 

designed for warehouses with crossovers at both the ends 

and midpoints of aisles. The authors compare their 

algorithm’s performance to established routing heuristics 

like S-shape, aisle-by aisle, largest gap, and a combined 

method. Additionally, they explore the impact of 

warehouse layout on efficiency, demonstrating that 

incorporating cross aisles can significantly reduce travel 

time during picking operations by offering more direct 

routes. However, the paper did not explore the impact of 

non-random storage assignment rules on heuristic 

performance, which could be crucial in real warehouse 

settings.  

 

Most existing algorithms exhibit limitations in 

scalability and computational time as warehouse 

complex ity increases. Similarly, path planning methods 

for warehouse robots often struggle with slow 

convergence and neglect downstream impacts. These 

challenges highlight the need for advanced AGV 

scheduling and path planning algorithms that can adapt 

to dynamic environments and scale efficiently. 

Therefore, this research focuses on employing lattice 

pathfinding algorithms to optimise route planning in 

warehouse logistics, with a specific emphasis on 

effective obstacle avoidance. The objectives include 

developing and optimising a specialised lattice 

pathfinding algorithm, evaluating its performance 

against traditional methods, and providing practical 

recommendations for real-world warehouse navigation 

challenges.  

 

2. Problem Description  

This research specifically focuses on block 

stocking warehouses, also known as pile-type 

warehouses. Figure 1 shows a simplified model of the 

warehouse. The red squares represent the area that is 

occupied by a single block and the blue square shows the 

area an AGV can go to for the retrieval of goods.  
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Figure 1: A Simple representation of a block stocking warehouse 

 

For simplicity, a translated version of this 

warehouse image is considered in this paper, as shown in 

Figure 2. The intersection of the grid lines or nodes 

represent each block and the lines represent the path a 

robot can take. The advantage of using a simplified 

lattice path model allows the easy facilitation of 

pathfinding algorithms. This allows the algorithms to 

easily explore the grid, evaluating possible movement 

options between connected cells, and ultimately identify 

the optimal path for the robot to navigate within the 

warehouse.  

 

 
Figure 2: The equivalent simplified model 
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Figure 3 portrays a model of a real-life warehouse.  

 

 
Figure 3: Model of a realistic block warehouse with Navigation information 

 

This model depicts a more expansive and 

complex environment, similar to a modern warehouse, 

where there are hundreds of blocks and isles. The figure 

visually depicts the path a robot needs to take for the 

retrieval of goods within the warehouse environment. 

This illustration provides the robot’s navigation process 

and the key elements involved.  

 

The green dot indicates the starting point for the 

robot’s journey. This can be the robot’s charging station 

or a designated starting location within the warehouse. 

The blue dots represent the specific locations, or blocks, 

within the warehouse that the robot needs to visit to 

retrieve goods. These blocks could correspond to 

individual storage locations, picking stations, or 

designated areas where specific items are stored. The 

sequence and order of visiting these blue dots therefore 

determine the efficiency of the overall retrieval process. 

The red dot signifies the final destination for the robot 

after completing its goods retrieval task. This point could 

be a designated drop-off location or the robot’s charging 

station, depending on the specific workflow. Figure 4 

translates this large-scale warehouse model into a 

corresponding simplified lattice path model. Similar to 

the previous lattice model, this representation abstracts 

the physical layout into a two-dimensional grid. This 

model incorporates a larger grid size to accommodate the 

increased complexity of the real world warehouse. 

Translating real-world warehouse layouts into simplified 

lattice path models is crucial for pathfinding algorithms 

for both simplicity and effectiveness. These algorithms 

operate more effectively within the grid structure, 

allowing them to determine optimal paths for robots 

navigating the actual warehouse environment while 

reducing the complexity. The figure also represents 

obstacles in the path, where the solid black squares 

denote the obstacles through which robots cannot pass. 

This scenario emphasises the challenges faced by robots 

performing tasks like navigation and path planning 

within warehouses.  
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Figure 4: Simplified model of a realistic block warehouse with obstacles 

 

The previous models discussed provide a 

foundational understanding of block warehouse layouts. 

How ever, real-world warehouses present a more 

complex environment filled with various obstacles that 

robots must navigate around. These obstacles pose 

significant challenges for robot path planning 

algorithms. The obstacles can be static or dynamic. Static 

obstacles are permanent fixtures within the warehouse 

that robots cannot move through, which can include 

support pillars or walls, inventory storage racks and 

shelves and also designated no-go zones due to 

maintenance, safety reasons, or specific operations that 

require human intervention. Dynamic obstacles include 

elements that can change within the warehouse 

environment, creat ing temporary blockages for robots. 

This reseacrh does not address actively moving obstacles 

but obstacles that may change positions but remain 

stationary during run-time. This research proposes a 

novel algorithm that addresses these challenges by 

modifying the heuristic function while taking effective 

obstacle avoidance into consideration.  

 

3. Algorithm Design  

This section describes our pathfinding 

algorithm designed for robots navigating a grid-based 

environment with obstacles. The algorithm modifies the 

A* search, a well-known technique for finding optimal 

paths in graphs or grids. A* search balances exploration 

of the search space with an informed prioritisation of 

promising paths. Our specific implementation focuses on 

finding the shortest path for a robot visiting multiple 

designated points within the warehouse. The problem 

can be formulated within the framework of a graph, 

where the warehouse layout is represented as a directed 

graph G = (V, E, D), comprising vertices V , edges E, and 

distances D.  

 

Consider a path path P as P1, P2, ..., Pn as shown 

in Figure 5, where each Pi denotes a coordinate on the x-

y plane or the two-dimensional grid.  

 

Vertices in the graph correspond to distinct 

locations within the warehouse, such as aisles, racks, 

inter sections, and loading docks. Formally, V = {v1, v2, 

..., vn}, where n denotes the total number of vertices in 

the warehouse layout. Edges represent permissible paths 

or connections between vertices, denoting feasible routes 

that can be traversed by the warehouse vehicles or 

personnel. For any pair of vertices vi, vj in V , if there 

exists a direct path from vi to vj , then an edge eij is present 

in E. Mathematically, E ⊆ V × V . The variable d 

represents the Manhattan distance between two nodes 

P1=(x1, y1) and P2=(x2, y2), which is simply given by:  

d(P1, P2) = |x2 − x1| + |y2 − y1|  

 

This dentoes the length or cost associated with 

traversing an edge in the warehouse graph. For any edge 

eij in E, the distance dij signifies the distance or cost to 
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travel from vertex vi to vertex vj . Formally, D = {dij},  

 

 
Figure 5: Simplified model of a realistic block warehouse with obstacles 

 

Where dij denotes the distance between vertices 

vi and vj. Given this graph representation of the 

warehouse layout, the optimization problem can be 

formally defined as finding the most efficient path or 

sequence of vertices to navigate from a designated source 

location to a target destination, subject to various 

constraints and objectives.  

 

Mathematical Formulation  

Let f denote the objective function, which 

quantifies the efficiency metric to be optimized. This 

metric may vary depending on the specific objectives of 

the warehouse management system. The objective 

function f can be expressed as a function of the path 

traversed through the warehouse graph, represented by a 

sequence of vertices, where f: V → R, where R represents 

the set of real numbers. The optimization problem may 

be subject to various constraints imposed by the 

warehouse environment, vehicle characteristics, safety 

regulations, and operational requirements. These 

constraints may include limitations on vehicle speed, 

maximum load capacity, aisle width, aisle congestion, 

and restricted access zones. The total cost associated 

with traversing a given path P in the warehouse graph 

can be expressed as the sum of distances between 

consecutive vertices along the path. Mathematically, the 

total cost C(P) can be represented as: 

C(P) = kX−1 i=1 xi,i+1 · d(vi, vi+1)  

 

Where k represents the number of vertices in the 

path P, and di,i+1 denotes the distance between the i-th and 

(i+ 1)-th vertices along the path. The variable xi,i+1 is a 

binary variable: it takes the value 1 if the edge between 

vertices vi and vi+j is included in the graph, representing 

that the point is part of the path P; otherwise, it takes the 

value 0.  

 

The core principle behind the algorithm lies in 

the A* search algorithm, a well-established method for 

optimal pathfinding in graphs and grids. In our specific 

implementation, the algorithm aims to find the shortest 

path for a robot that needs to visit multiple designated 

points sequentially. The algorithm maintains a priority 

queue (heap) data structure. This queue stores potential 

paths, each represented as a tuple containing the total 

cost incurred so far (distance travelled by the robot), the 

current cell coordinates of the robot, and the path history, 

which tracks the sequence of cells visited to reach the 

current cell. The algorithm then iteratively explores the 

neighbours of the cell with the lowest total cost 

according to the priority queue. This prioritisation 

ensures that the algorithm focuses on paths that are most 

likely to lead to the goal efficiently.  

 

To further guide exploration, the algorithm 

employs a heuristic function. This function estimates the 

remaining distance from the current cell to the final 

destination. In our case, we utilise the Manhattan 

distance heuristic. As stated above, it calculates the 

absolute difference in x and y coordinates between the 

current cell and the final destination, providing a simple 

and efficient estimate of the remaining distance. The 

estimated distance is then added to the actual cost to 

create the total cost for each path. This combined value 

guides the prioritisation within the heap, favouring paths 

that are geographically closer to the goal. The two key 
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data structures utilised by the algorithm are the priority 

queue and the visited set structure. The priority queue 

prioritises elements based on a key value. In our 

implementation, the key value represents the total cost of 

a path, which is the sum of the actual cost traversed so 

far and the estimated remaining distance calculated by 

the heuristic function. The heap efficiently retrieves the 

cell with the lowest total cost for exploration at each step. 

This ensures that the algorithm explores promising paths 

with potentially lower overall costs first, leading to a 

faster discovery of the optimal path. This Visited Set 

stores the coordinates of all cells that have already been 

explored by the algorithm. Including a cell’s coordinates 

in the visited set after it has been explored ensures the 

algorithm doesn’t revisit previously explored areas. This 

prevents redundant exploration and focuses the search 

towards unexplored territories within the warehouse 

environment.  

 

 

The algorithm incorporates obstacle detection 

to ensure the robot navigates only on valid paths. Before 

considering a neighbouring cell for exploration, the 

algorithm checks two conditions - the cell must be within 

the defined grid boundaries and the cell’s value in the 

grid representation must not be 1, which signifies an 

obstacle. By adhering to these conditions, the algorithm 

ensures that the robot only explores and utilises valid 

paths that are free of obstacles.  

 

Once the robot reaches a designated point, the 

algorithm needs to reconstruct the complete path taken 

so far. This path reconstruction is done by the 

information stored within the priority queue. Each cell in 

the queue stores its parent cell in the path, indicating the 

cell from which it was explored. By backtracking 

through this parent-child relationship stored in the queue, 

the algorithm can reconstruct the complete path taken by 

the robot from the starting point to the current designated 

point. This backtracking process continues for each 

designated point the robot needs to visit. The algorithm 

finds the next closest unvisited point using the heuristic 

function and repeats the exploration process until all 

designated points are visited. By accumulating the 

reconstructed paths for each point, the algorithm obtains 

the final complete path for the entire robot navigation 

task. Figure 6 below shows a simplified flowchart 

indicating the basic principles of the algorithm. 

 

 
Figure 6: A basic understanding of the key principles of the algorithm 
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4. Comparative Analysis  

This section presents a comparative analysis of 

our proposed algorithm with Dijkstra’s algorithm, a 

popular pathfinding algorithm widely used today. Our 

aim is to evaluate the strengths and weaknesses of each 

approach in the context of robot pathfinding within 

warehouse environments with obstacles. This 

comparison will discuss the suitability of our algorithm 

for practical applications in warehouse navigation tasks.  

 

4.1 Time Complexity  

This section analyses the time complexity of the 

proposed algorithm and Dijkstra’s algorithm. Time com 

plexity refers to the amount of time an algorithm takes to 

execute as the size of the input grows. In the context of 

robot pathfinding within a warehouse environment, the 

main factors affecting the input size are - the number of 

grid cells (V), the number of obstacles and the number of 

designated points (P).  

 

4.1.1 Proposed Algorithm  

The time complexity is analysed by taking the 

average and the worst case scenarios into consideration.  

 

Average Case In the average case scenario, 

where the heuristic function provides a good estimate of 

the remaining distance, the time complexity of the 

proposed algorithm is expected to be:  

O((logb) ∗ V )  

 

Where log b represents the repeated operations 

on the priority queue (heap) used for exploration, b 

represents the branching factor, which is the average 

number of neighbours a cell has in the grid. The 

logarithmic term reflects the efficient retrieval and 

update operations within the heap data structure and V 

represents the total number of grid cells.  

 

Worst Case In the worst case scenario, where 

the heuristic function provides poor estimates, the time 

complexity of the algorithm can approach:  

O(W ∗ logb ∗ V )  

 

Here, W represents a factor dependent on the 

specific grid layout, obstacle distribution, and the 

starting and goal locations. This factor accounts for the 

additional exploration required due to the heuristic’s inef 

ficiency in the worst case. However, the logarithmic term 

(log b) due to the heap operations and the linear term (V) 

representing the total number of cells are likely to 

dominate the complexity even in the worst case. 

 

4.1.2 Dijkstra’s Algorithm  

Dijkstra’s algorithm has a time complexity of:  

O(V + E ∗ logV )  

 

Where, E Represents the total number of edges 

in the grid. In a warehouse environment, this translates 

to the number of valid connections between 

neighbouring cells.  

 

5. RESULTS 

 

 
(a) The Time Complexity analysis of the proposed algorithm 

and Diksarta’a algorithm 

 
(b) The Time Complexity analysis shown on a line 

graph 

Figure 7: Average Case Time Complexity Comparison 

 

In the average case, the proposed algorithm 

outperforms Dijkstra’s algorithm as shown in Figures 7 

a. and b. due to the logarithmic term (log b) in its 

complexity. This logarithmic term stems from the 

efficient use of a priority queue (heap) data structure for 

exploration. The heap operations, like inserting and 

retrieving elements, take logarithmic time with respect to 

the number of elements in the heap. In the context of our 

algorithm, the number of elements in the heap 

corresponds to the number of promising paths being 

explored. As the warehouse environment (grid size) 

grows, the number of paths to explore increases. 

However, due to the logarithmic nature of heap 

operations, the time spent managing the exploration 

queue scales proportionally less significantly compared 

to Dijkstra’s algorithm.  
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Dijkstra’s algorithm, on the other hand, has a 

time complexity that includes a term linear in the number 

of grid cells (V) and edges (E). As the warehouse 

environment becomes larger, the number of cells and 

edges increases proportionally. This translates to a more 

significant growth in the execution time for Dijkstra’s 

algorithm compared to the proposed algorithm in the 

average case. Therefore, the logarithmic term in the 

proposed algorithm’s complexity signifies that the 

exploration process scales more efficiently with the size 

of the warehouse grid compared to Dijkstra’s algorithm. 

This efficiency advantage becomes more pronounced for 

larger warehouses, making the algorithm a more suitable 

choice in such scenarios.  

 

While both algorithms can theoretically exhibit 

exponential dependence in the worst case, there are many 

potential advantages for the proposed algorithm in 

handling complex warehouse environments. Dijkstra’s 

algorithm’s dependence on the total number of grid cells 

(V) and edges (E) can lead to significant exploration 

overhead, especially in scenarios with dense obstacles or 

unfavourable start and goal locations. In such cases, the 

exhaustive exploration strategy of Dijkstra’s algorithm 

might struggle to efficiently navigate the environment.  

 

On the other hand, our algorithm’s complexity 

includes a logarithmic term (log b) that stems from the 

efficient management of the exploration queue using a 

heap data structure. This logarithmic term helps to 

mitigate the impact of a growing number of potential 

paths on the processing time. Additionally, the proposed 

algorithm’s inherent prioritisation mechanism, guided by 

the heuristic function restricts the exploration to a more 

focused search space around promising paths. This focus 

can significantly reduce the number of irrelevant paths 

explored compared to Dijkstra’s exhaustive approach, 

potentially preventing the worst-case complexity from 

becoming extremely slow in complex warehouse 

environments. The results of the above can be seen in 

Figures 8 a. and b. below. 

 

 
(a) The Time Complexity analysis of the pro posed 

algorithm and Diksarta’a algorithm 

 
(b) The Time Complexity analysis shown on a bar graph 

Figure 8: Worst Case Time Complexity Comparison 

 

Overall, by considering both average and worst-

case scenarios, this comparative analysis highlights the 

potential of the proposed algorithm for efficient robot 

pathfinding in warehouse environments. The logarithmic 

term in its complexity signifies efficient exploration 

management using a priority queue. This structure allows 

our algorithm to scale more efficiently as the warehouse 

size increases, making it a preferable choice for real-

world scenarios. While there might be a slight trade-off 

for very small warehouses, the overall analysis suggests 

that our proposed algorithm offers a significant time 

complexity advantage for larger and more realistic 

warehouse environments. The algorithm was developed 

with Python 3.12 and all simulations were done with 

MATLAB R2024a. 

 

6. CONCLUSION  
In this research, a critical aspect of our analysis 

was the time complexity of the proposed algorithm. 

Optimizing warehouse operations requires efficient 

navigation with the ability for robots to complete tasks in 

a timely manner. By comparing the time complexity of 

our algorithm to Dijkstra’s algorithm, we were able to 

demonstrate the efficiency gains achieved by our 

method, particularly in scenarios with larger warehouse 

layouts. This efficiency translates to faster retrieval and 

storage times, ultimately contributing to increased 

warehouse throughput. While this research focused on 

time complexity, future work can explore the energy 

efficiency of the proposed algorithm. Investigating the 

relationship between pathfinding strategies and robot 

energy consumption could pave the way for even more 

optimized warehouse operations that minimize energy 

use without compromising efficiency. Morevover, We 

highlighted the limitations of traditional pathfinding 

algorithms in these warhouse settings, particularly not 

taking obstacle avoidance into consideration and having 

higher time complexity. Further research can explore the 



 
 

 

 

 

 

 

Paarth Sonkiya, Sch J Eng Tech, Oct, 2024; 12(10): 314-323 

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          323 

 

 

 

 

integration of machine learning techniques to 

continuously learn and improve the algorithm’s 

performance in dynamic environments. Additionally, in 

vestigating methods for collaborative path planning 

between multiple robots operating within the warehouse 

could further optimize overall throughput and efficiency. 

By addressing the challenges of dynamic warehouse 

navigation, this research contributes to the development 

of more efficient and reliable automated systems for 

modern warehouses. This will play a vital role in 

supporting the ever-growing demands of the e-commerce 

sector and ensuring the smooth flow of goods within the 

supply chain.  

 

REFERENCES  
1. Liu, X., Cao, J., Yang, Y., & Jiang, S. (2018). CPS-

Based Smart Warehouse for Industry 4.0: A Survey 

of the Underlying Technologies. Computers, 7(1), 

13.  

2. Roodbergen, K. J., & De Koster, R. (2001). Routing 

methods for warehouses with multiple cross aisles. 

International Journal of Production Research, 

39(9), 1865-1883.  

3. Sanei, O., Nasiri, V., Marjani, M. R., & Moattar 

Husseini, S. M. (2011). A heuristic algorithm for the 

warehouse space assignment problem considering 

operational constraints: with application in a case 

study. Proceedings of the 2011 International 

Conference on Industrial Engineering and 

Operations Management, Kuala Lumpur, Malaysia, 

January 22-24, 2011.  

4. Shen, X., Yi, H., & Wang, J. (2021). Optimization 

of picking in the warehouse. Journal of Physics: 

Conference Series, 1861.  

5. Sun, Y., Fang, M., & Su, Y. (2021). AGV Path 

Planning and Obstacle Avoidance Using Dijkstra’s 

Algorithm. Journal of Physics: Conference Series, 

1746.  

6. Yang, B., Li, W., Wang, J., Yang, J., Wang, T., & 

Liu, X. (2020). A Novel Path Planning Algorithm 

for Warehouse Robots Based on a Two-

Dimensional Grid Model. IEEE Access, 8, 80347-

80357.  

7. Liu, R. (2022). Research on Optimization of the 

AGV Shortest‐Path Model and Obstacle Avoidance 

Planning in Dynamic Environments. Mathematical 

Problems in Engineering, 2022(1), 2239342. 

doi.org/10.1155/2022/2239342.  

8. Shetty, N., Sah, B., & Chung, S. H. (2020). Route 

optimization for warehouse order picking operations 

via vehicle routing and simulation. SN Applied 

Sciences, 2, 1-18. doi.org/10.1007/s42452- 020-

2076-x. 

9. Tai, R., Wang, J., & Chen, W. (2019). A prioritized 

planning algorithm of trajectory coordination based 

on time windows for multiple AGVs with delay 

disturbance. Assembly Automation, 39(5), 753-768. 

doi.org/10.1108/AA-03-2019-0054.  

10. Chen, J., Zhang, X., Peng, X., Xu, D., & Peng, J. 

(2022). Efficient routing for multi-AGV based on 

optimized Ant-agent. Computers & Industrial 

Engineering, 167, 108042. 

doi.org/10.1016/j.cie.2022.108042  

11. Zhou, Y., & Huang, N. (2022). Airport AGV path 

optimization model based on ant colony algorithm 

to optimize Dijkstra algorithm in urban 

systems. Sustainable Computing: Informatics and 

Systems, 35, 100716. 

doi.org/10.1016/j.suscom.2022.100716.  

12. Meysami, A., Cuillière, J. C., François, V., & 

Kelouwani, S. (2022). Investigating the impact of 

triangle and quadrangle mesh representations on 

AGV path planning for various indoor 

environments: With or without 

inflation. Robotics, 11(2), 50. 

doi.org/10.3390/robotics11020050. 

 


