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Abstract  Review Article 
 

This study uses the long-established Lie symmetry approach to work out the Zakharov-Kuznetsov- Benjamin-Bona-

Mahony (ZK-BBM) equation, a nonlinear partial differential equation (PDE) widely applied in modelling wave 

propagation across numerous materials. By distinguishing symmetries and group-invariant solutions, the ZK-BBM 

equation can be curtailed, and a new exact solution can be deduced. The work also probes similarity solutions to the 

equation, exhibiting various examples and their outcomes for wave dynamics. Eventually, conservation laws related to 

the ZK-BBM equation are evaluated using adjoint equations and their symmetries. The behaviour of the ZK-BBM 

equation and its solutions gives profound knowledge that ushers in the importance of this comprehensive study, which 

greatly impacts numerous study fields like quantum physics, fluid dynamics, and elasticity theory. 

Keywords: Lie symmetries, ZK-BBM equation, group-invariant solutions, similarity solutions, conservation laws, 

partial differential equations, wave propagation, and nonlinear dynamics. 
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1. INTRODUCTION 
The symmetries [1, 2] do play a vital role in the 

investigation of integrable systems in the study of partial 

differential equations (PDEs) which exhibit intricacy. 

The convoluted systems, which are designed by their 

infinite symmetries, can be competently investigated 

using symmetry group approaches [3–5]. A precise 

solution for complex PDEs can be attained by these key 

methods. A few techniques to calculate the Lie point 

symmetries of a nonlinear equation [1, 6] have emerged 

because of their effectiveness. Nonlinear PDEs are in 

several scientific areas, including condensed matter 

physics, fluid mechanics, plasma physics, and optics. 

Finding exact solutions to PDEs is a key issue in 

mathematics and physics. 

 

The classical Lie group technique [7, 8] is a 

traditional practice for studying differential equations 

using continuous transformation groups. Literal 

solutions of several PDEs can be attained for travelling 

wave solutions, similarity solutions, soliton wave 

solutions, and fundamental solutions by using the Lie 

group approach. Compared with the non-classical Lie 

group approach, it expands the classical technique by 

considering additional restrictions which would be 

uniform under the action of the symmetry group. 

Clarkson-Kruskal (CK) presented the direct symmetry 

method [9, 10] which is a relatively easy approach that, 

as result, reduces the process of finding symmetry by 

abolishing the lengthy computations involved with 

traditional approaches. This study technique focuses on 

identifying reductions from PDEs to ordinary differential 

equations (ODEs), which can be easily solved. There is 

another important technique, which is the compatibility 

method [11, 12] and investigates the compatibility 

conditions of overdetermined differential equation 

systems. This beneficial method is being used to find 

hidden symmetries which are hard to find using 

traditional methods. The study of symmetries in 

perturbed partial differential equations [13] requires an 

equal balance between understanding the stability of 

existing symmetries and identifying new ones. The 

importance of this study is that it is not just for theoretical 

investigations but also being used for such applications, 

which are real-world examples like elasticity theory, 

fluid dynamics, and quantum mechanics, to understand 
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the system and how it will perform with a slight 

perturbation. The generalised symmetry approach finds 

the transformations, which are not always point 

transformations; hence, developing these methods lead 

to more suitable approaches. A specific solution that 

cannot be determined by using the conventional 

symmetry approach can be attained by using the 

conditional symmetry approach, which is another 

noteworthy approach. This study is also extended to find 

the lie symmetries, conservation laws and exact solutions 

of fractional-order partial differential equations [14] and 

the Apostol–Bernoulli, Apostol–Euler, and Apostol–

Genocchi Hermite polynomials [15]. 

 

This study aims to apply the classical Lie 

symmetry method to a specific nonlinear partial 

differential equation known as the Zakharov-Kuznetsov-

Benjamin-Bona-Mahony (ZK-BBM) equation, which is 

given by: 

 𝑢𝑡 + 𝑢𝑥 + 𝑝𝑢𝑢𝑥 + 𝑞𝑢𝑥𝑥𝑡 + 𝑞𝑢𝑦𝑦𝑥 = 0. ……… (1) 

 

The existence of mixed partial derivatives 

indicates that they are an extended form of the standard 

Korteweg-De Vries (KdV) equation, containing both 

two-dimensional effects and higher order dispersion 

factors. The coefficients 𝑝 and 𝑞 in the equation are real 

constants that characterise the amplitude and dispersion 

properties of the wave, respectively. 

 

To find the solutions for the ZK-BBM equation, 

Wazwaz [16, 17] implied the sine-cosine approach and 

the extended tanh method on solitons, periodic solutions, 

and complex solutions. The f-expansion method was 

used for improved analysis and generation of exact 

results by Abdou [18]. This approach requires expanding 

the solutions, using a finite set of functions can provide 

a systematic method for discovering new and potentially 

more general solutions. The bifurcation method of a 

dynamical system was used by Song and Yang [19] to 

address the system problem. It is important to understand 

the qualitative behaviour of solutions, particularly for 

identifying travelling wave solutions and figuring out 

their stability and bifurcation features. 

 

This study is organized in such a way that 

Section 2 discusses the findings of symmetries, Lie 

symmetry groups, and invariant solutions for equation 

(1). In Section 3, we find the best reductions of the 

equation (1), while Section 4 is dedicated to the 

derivation of new exact solutions. Section 5 contains the 

conservation laws associated with equation (1). This 

study ends with Section 6, which concludes our work. 

 

2. Symmetries and Lie symmetry groups 

The fundamental goal of using the Lie symmetry approach in this context is to find symmetries of a given PDE, 

with another goal of determining exact solutions. For equation (1), the corresponding vector field can be expressed as 

follows: 

 𝐗 = 𝜉1(𝑥, 𝑦, 𝑡, 𝑢)
∂

∂𝑥
+ 𝜉2(𝑥, 𝑦, 𝑡, 𝑢)

∂

∂𝑦
+ 𝜉3(𝑥, 𝑦, 𝑡, 𝑢)

∂

∂𝑡
+ 𝜂(𝑥, 𝑦, 𝑡, 𝑢)

∂

∂𝑢
 , ……….. (2) 

 

Which is the infinitesimal generator of the symmetry group. The equation (1) contains the highest order of three, 

so we define its third prolongation, which expands this generator to include derivatives up to the third order. This is essential 

for collecting the behaviour of solutions under transformations involving second-order derivatives present in equation (1). 

The third prolongation is written in the following form: 

𝐗(3) = 𝐗 + 𝜁𝑡
∂

∂𝑢𝑡
+ 𝜁𝑥

∂

∂𝑢𝑥
+ 𝜁𝑥𝑥𝑡

∂

∂𝑢𝑥𝑥𝑡
+ 𝜁𝑦𝑦𝑥

∂

∂𝑢𝑦𝑦𝑥
. ……………..….. (3) 

 

Where the functions 𝜁𝑡, 𝜁𝑥 , 𝜁𝑥𝑥𝑡, 𝜁𝑦𝑦𝑥 are defined in terms of 𝜉1, 𝜉2, 𝜉3, 𝜂, and the derivatives of 𝜁, ensuring full 

understanding about the behaviour of the PDE's under symmetry transformations. From 𝐗(3)(𝐹)|
𝐹=0

= 0, which means 

applying third prolongation to the equation (1), it follows as: 

𝜁𝑡 + 𝜁𝑥 + 𝑝𝑢𝑥𝜁 + 𝑝𝑢𝜁𝑥 + 𝑞𝜁𝑥𝑥𝑡 + 𝑞𝜁𝑦𝑦𝑥 = 0. ……………………..….. (4) 

 

By setting the coefficient of the polynomial in equation (4) to zero, a system of differential equations emerges, 

determining the forms of the functions 𝜉, 𝜉2, 𝜉3, and 𝜂. Solving this system reveals the symmetry parameters: 

𝜉1 = 𝑒3,  𝜉2 =
1

2
𝑒1𝑦 + 𝑒4,  𝜉3 = 𝑒1𝑡 + 𝑒2,  𝜂 = −𝑒1

𝑝𝑢+1

𝑝
, …………….. (5) 

 

And the arbitrary constants 𝑒1, 𝑒2, 𝑒3, and 𝑒4 are important in construction of the corresponding symmetries and 

generating exact solutions. 

 

The resulting symmetries can be expressed as follows: 

𝒳 = 𝑒3𝑢𝑥 + (
1

2
𝑒1𝑦 + 𝑒4) 𝑢𝑦 + (𝑒1𝑡 + 𝑒2)𝑢𝑡 − 𝑒1

𝑝𝑢+1

𝑝
𝑢, …………….. (6) 

 

Representing the transformations under which the PDE maintains its form. Each term in equation (6) corresponds 

to a specific transformation in the (𝑥, 𝑦, 𝑡, 𝑢) space, indicating how the solution 𝑢 changes under the action of the symmetry. 
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The vector field is defined as: 

 𝐗 = 𝑒3
∂

∂𝑥
+ (

1

2
𝑒1𝑦 + 𝑒4)

∂

∂𝑦
+ (𝑒1𝑡 + 𝑒2)

∂

∂𝑡
− 𝑒1

𝑝𝑢+1

𝑝

∂

∂𝑢
. …………….. (7) 

 

To obtain exact solutions from those already known for equation (1), we have to identify the related Lie symmetry 

groups and to do this, we use the initial problems. The equation takes the form of an initial value problem, where the 

dependent variables (𝑥, 𝑦, 𝑡, 𝑢) are transformed into new variables (𝑥‾, 𝑦‾, 𝑡‾, 𝑢‾) under the action of a parameterized symmetry 

group. The parameter Varepsilon serves as a continuous scaling factor, allowing for infinitesimal transformations. 

 

The differential equation: 

 
𝑑

𝑑𝜀
(𝑥‾, 𝑦‾, 𝑡‾, 𝑢‾) = (𝑥, 𝑦, 𝑡, 𝑢), ……………………………………………... (8) 

 

Specifies how the transformed variables change concerning the parameter 𝜀. This equation essentially describes 

the infinitesimal action of the Lie symmetry group on the variables (𝑥, 𝑦, 𝑡, 𝑢). By integrating this differential equation 

with respect to 𝜀, we obtain the transformed variables (𝑥, 𝑦, 𝑡, 𝑢) as functions of (𝑥‾, 𝑦‾, 𝑡‾, 𝑢‾). The initial conditions are: 

 (𝑥‾, 𝑦‾, 𝑡‾, 𝑢‾)|𝜀=0 = (𝑥, 𝑦, 𝑡, 𝑢), …………….. (9) 

 

Define the values of the transformed variables at the starting point (𝜀 = 0). 

 

From equation (8), we can derive the Lie symmetry group denoted as 𝐠: (𝑥‾, 𝑦‾, 𝑡‾, 𝑢‾) → (𝑥, 𝑦, 𝑡, 𝑢). This group 

represents the transformations that preserve the form of equation (1). By analysing different functions 𝜉1, 𝜉2, 𝜉3, and 𝜂 

appearing in the expression for the symmetry 𝒳, we can solve equation (8) to obtain particular Lie symmetry groups. These 

groups, denoted as 𝐠1, 𝐠2, 𝐠3 and g4, are described as follows: 

 

 𝐠1: (𝑥‾, 𝑦‾, 𝑡‾, 𝑢‾) ⟶ (𝑥 + 𝜀, 𝑦, 𝑡, 𝑢),

 𝐠2: (𝑥‾, 𝑦‾, 𝑡‾, 𝑢‾) ⟶ (𝑥, 𝑦 + 𝜀, 𝑡, 𝑢),

 𝐠3: (𝑥‾, 𝑦‾, 𝑡‾, 𝑢‾) ⟶ (𝑥, 𝑦, 𝑡 + 𝜀, 𝑢),

 𝐠4: (𝑥‾, 𝑦‾, 𝑡‾, 𝑢‾) ⟶ (𝑥, 𝑦 + 𝑒
1

2
𝜀 , 𝑡 + 𝑒𝜀 , 𝑢 + 𝑒−𝜀 −

1

𝑝
) .

 …………….. (10) 

 

These Lie symmetry groups represent translations along the 𝑥, 𝑦 and 𝑡 axes, as well as a more complex 

transformation involving exponential terms. By applying these symmetry groups 𝐠𝟏, 𝐠𝟐, 𝐠3 and 𝐠4 to known solutions of 

equation (1), represented by the function 𝑣 new exact solutions can be obtained: 

 

 𝐮1 = 𝑣(𝑥 − 𝜀, 𝑦, 𝑡),

 𝐮2 = 𝑣(𝑥, 𝑦 − 𝜀, 𝑡),

 𝐮3 = 𝑣(𝑥, 𝑦, 𝑡 − 𝜀),

 𝐮𝟒 = 𝑣 (𝑥, 𝑦 − 𝑒−
1

2
𝜀 , 𝑡 − 𝑒−𝜀) −

1

𝑝
+ 𝑒−𝜀 .

 …………………….... (11)  

 

For instance, deal with the solution, which is a periodic wave solution [16] of the equation (1) 

 𝑢(𝑥, 𝑦, 𝑡) =
3(𝑑−1)

2𝑝
sec2 (

1

2√𝑞
𝜉1), ……………………………….….. (12) 

 

Where 𝑞 > 0 and 𝜉1 = 𝑥 + 𝑦 − 𝑑𝑡. 

 

By applying the 𝐮4, a new exact solution of equation (1) can be derived, involving the exponential term 𝑒−𝜀 in 

the argument of the periodic wave function. 

 𝑢(𝑥, 𝑦, 𝑡) =
(3𝑑𝑐−1)

2𝑎
sec2 (

1

2√𝑞
𝜉1) −

1

𝑝
+ 𝑒−𝜀 , …………….……….. (13) 

 

Where 𝑞 > 0 and 𝜉1 = 𝑥 + 𝑦 − 𝑒−
1

2
𝜀 − 𝑑(𝑡 − 𝑒−𝜀). 

 

3. Symmetry Reduction of ZK-BBM Equation 

In this section, we reduce the equation (1) with the help of the symmetries (5). To do this, we need to discuss 

some cases: 

 

Case 3.1: 

We consider the conditions where 𝑒1 ≠ 0, 𝑒2 = 0, 𝑒3 = 0, 𝑒4 = 0 and substituting these values into the expression 

for the symmetry 𝒳, we will have:  

𝒳 =
1

2
𝑒1𝑦𝑢𝑦 + 𝑒1𝑡𝑢𝑡 − 𝑒1

𝑎𝑢+1

𝑝
𝑢, ……………………………..….. (14) 
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Subsequently solving the differential equation 𝒳 = 0, yields specific expressions for the variables 𝜉1, 𝜂 and 𝑢 as shown in 

equation (15). 

𝜉1 = 𝑥,  𝜂 =
𝑦2

𝑡
,  𝑢 =

1

𝑡
𝑣(𝜉1, 𝜂) −

1

𝑎
. ……………………………….. (15) 

 

Using these derived expressions in equation (1) leads to the reduced form given as follows: 

−𝑣 − 𝜂𝑣𝜂 + 𝑣𝑣𝜉1 + 𝑏(−𝑣𝜉1𝜉1 − 𝜂𝑣𝜉1𝜉1𝜂 + 2𝑣𝜂𝜉1 + 4𝜂𝑣𝜂𝜂𝜉1) = 0. …………….. (16) 

 

Case 3.2: 

We explore this case when 𝑒1 = 0, 𝑒2 ≠ 0, 𝑒3 ≠ 0, 𝑒4 ≠ 0, and substituting these conditions into the expression 

for 𝒳, we get: 

𝒳 = 𝑒3𝑢𝑥 + 𝑒4𝑢𝑦 + 𝑒2𝑢𝑡. ……………………………………….….. (17) 

 

Solving for 𝒳 = 0, we obtain the expressions for 𝜉1, 𝜂 and 𝑢.  

𝜉1 = 𝑥 −
𝑒3

𝑒2
𝑡,  𝜂 = 𝑦 −

𝑒4

𝑒2
𝑡,  𝑢 = 𝑣(𝜉1, 𝜂). ………………………….. (18) 

 

By using these expressions (18) into equation (1) results in the reduced form: 

(1 −
𝑒3

𝑒2
) 𝑣𝜉1 −

𝑒4

𝑒2
𝑣𝜂 + 𝑝𝑣𝑣𝜉1 + 𝑞 (−

𝑒3

𝑒2
𝑣𝜉1𝜉1𝜉1 −

𝑒4

𝑒2
𝑣𝜉1𝜉1𝜂 + 𝑣𝜂𝜂𝜉1) = 0. …………….. (19) 

 

Case 3.3: 

We consider the conditions where 𝑒1 = 0, 𝑒2 ≠ 0, 𝑒3 = 0, 𝑒4 ≠ 0. Substituting these values into the expression 

for 𝒳, we obtain the following form: 

𝒳 = 𝑒4𝑢𝑦 + 𝑒2𝑢𝑡. ………………………………………………….. (20) 

 

Solving for 𝒳 = 0, we obtain expressions for 𝜉1, 𝜂 and 𝑢. 

𝜉1 = 𝑥,  𝜂 = 𝑦 −
𝑒4

𝑒2
𝑡,  𝑢 = 𝑣(𝜉1, 𝜂). …………………………...…... (21) 

 

Substituting these expressions (21) into equation (1) yields the reduced form, represented as follows: 

 𝑣𝜉1 −
𝑒4

𝑒2
𝑣𝜂 + 𝑞𝑣𝑣𝜉1 + 𝑞 (−

𝑒4

𝑒2
𝑣𝜉1𝜉1𝜂 + 𝑣𝜂𝜂𝜉1) = 0. …………….. (22) 

 

4. Similarity solutions of ZK-BBM equation 

We explore various cases to obtain new solutions of equation (1) by dealing with the reduced equations (16), (19), 

and (22). Those cases are studied in the following ways: 

 

Case 4.1: 

Here, we say that equation (16) admits a solution that looks like the following: 

 𝑣 = Φ(𝜂)𝜉1 + Ψ(𝜂), ………………………………………….….. (23) 

 

Where Φ(𝜂) and Ψ(𝜂) are unknown functions that we have to determine. Using the equation (23) inside the equation (16) 

gives the following: 

 𝑣 =
1

1+𝑒1𝜂
𝜉1 + Ψ(𝜂), ………………………………………….….. (24) 

 

Then we find a new exact solution of equation (1) that looks like the following: 

 𝐮𝟏 =
1

𝑝(𝑡+𝑐1
∗𝑦2)

(𝑥 + 2𝑞𝑐1
∗ln (𝑡 + 𝑐1

∗𝑦2) − 4𝑞𝑐1
∗ln 𝑦 + 𝑐2

∗) −
8𝑞𝑡𝑐1

∗

𝑝(𝑡+𝑐1
∗𝑦2)

2 −
1

𝑝
, …………….. (25) 

 

Which offers ideas about the behaviour of the equation (1) under specific conditions determined by the constants 

𝑐1
∗ and 𝑐2

∗. 

 

Case 4.2: 

We study equation (19) by employing the 𝐺′/𝐺-expansion method [20] and looking for the solutions, which are 

travelling wave solutions. 

𝑣 = ∑  𝑁
𝑖=1 𝜆𝑖 (

𝐺′(Ψ)

𝐺(Ψ)
)

𝑖

+ 𝜆0,  𝜆𝑗 ≠ 0, ……………………………….. (26) 

 

Where 𝜆𝑖 are constants that we find later and Ψ = 𝑘𝜉1 + 𝑙𝜂. It is observed that 𝑗 = 2 by balancing 𝑣𝜉1 and 𝑣𝑣𝜉1 in equation 

(17). Let the solutions of equation (17) be of the form: 
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𝑣 = 𝜆2 (
𝐺′(Ψ)

𝐺(Ψ)
)

2

+ 𝜆1 (
𝐺′(Ψ)

𝐺(Ψ)
) + 𝜆0,  𝜆2 ≠ 0, ………..…….. (27) 

 

with 𝐺(Ψ) satisfying the second-order linear ODE 

 𝐺′′(Ψ) + 𝜅𝐺′(Ψ) + 𝛾𝐺(Ψ) = 0, …………………….….. (28) 

 

Where the constants to be determined later are 𝜆0, 𝜆1, 𝜆2, 𝜅, 𝛾 and Ψ = 𝑘𝜉1 + 𝑙𝜂. Substituting equation (27) into 

equation (19) along with equation (28) and fixing the values of the coefficients of (𝐺′(Ψ)/𝐺(Ψ))𝑖, (𝑖 = 0, … ,4) to zero 

results in a system of equations concerning 𝜆0, 𝜆1, 𝜆2, Υ, and 𝑙. 
 

After a detailed derivation process, we obtain three different types of travelling wave solutions and for every 

solution, we can have further three cases on 𝜆2 − 4𝛾 which are given below: 

 

Case 4.2.1: 

When 𝜆2 − 4𝛾 > 0, 

 
 𝑢2 =

3𝑞

𝑝𝑒2
(𝜆2 − 4𝛾) (𝑒3𝑘 + 𝑒4𝑙 − 𝑒2

𝑙2

𝑘
)

𝑐1
∗sin ΥΨ+𝑐2

∗cos ΥΨ

𝑐1
∗cos ΥΨ+𝑐2

∗sin ΥΨ

  +
2𝑞

𝑝𝑒2
(𝜆2 − 4𝛾) (−𝑒3𝑘 − 𝑒4𝑙 + 𝑒2

𝑙2

𝑘
) +

1

𝑝𝑒2
(𝑒4

𝑙

𝑘
− 𝑒2 + 𝑒3) .

 …………….. (29) 

 

Case 4.2.2: 

When 𝜆2 − 4𝛾 < 0, 

 𝑢3 = −
3𝑞

𝑝𝑒2
(4𝛾 − 𝜆2) (𝑒3𝑘 + 𝑒4𝑙 − 𝑒2

𝑙2

𝑘
)

𝑐1
∗sin ΥΨ+𝑐2

∗cos ΥΨ

𝑐1
∗cos ΥΨ+𝑐2

∗sin ΥΨ

  +
2𝑞

𝑝𝑒2
(4𝛾 − 𝜆2) (−𝑒3𝑘 − 𝑒4𝑙 + 𝑒2

𝑙2

𝑘
) +

1

𝑝𝑒2
(𝑒4

𝑙

𝑘
− 𝑒2 + 𝑒3) .

 …………….. (30) 

 

Case 4.2.3: 

When 𝜆2 − 4𝛾 = 0, 

𝑢4 =
12𝑞

𝑝𝑒2
(𝑒3𝑘 + 𝑒4𝑙 − 𝑒2

𝑙2

𝑘
)

𝑐1
∗sin ΥΨ+𝑐2

∗cos ΥΨ

𝑐1
∗cos ΥΨ+𝑐2

∗sin ΥΨ
+

1

𝑝𝑒2
(𝑒4

𝑙

𝑘
− 𝑒2 + 𝑒3), ……….. (31) 

 

where Ψ = 𝑘𝑥 + 𝑙𝑦 − (
𝑘𝑒3+𝑙𝑑−4

𝑒2
) 𝑡. 

 

Case 4.3: 

Let 𝑣 = 𝑣(Ψ), where Ψ = 𝑘𝜉1 + 𝑙𝜂 and equation (22) becomes an ODE: 

(𝑘 −
𝑒4

𝑒2
𝑙) 𝑣′ + 𝑝𝑘𝑣𝑣′ + 𝑞 [−

𝑒4

𝑒2
𝑘2𝑙 + 𝑘𝑙2] 𝑣′′′ = 0, ………………………... (32) 

 

here, we integrate two times with respect to Ψ in equation (32), obtain: 
(𝑣′)2 = Γ1𝑣3 + Γ2𝑣2 + Γ3𝑣, ………………………………………………….. (33) 

 

Where Γ1 =
𝑒2𝑝

3𝑞𝑙
(𝑒4𝑘 − 𝑒2𝑙), Γ2 =

𝑒2𝑘−𝑒4𝑙

𝑞𝑘𝑙
(𝑒4𝑘 − 𝑒2𝑙), and Γ3 is a constant. 

 

Given that solutions to equation (33) have been provided in [21], we can derive several similarity solutions for 

equation (1) as outlined below: 

 

Case 4.3.1: 

When Γ1 = 4Θ2, Γ2 = 4(−Θ2 − 1), Γ3 = 4, 

𝑢5 = 𝑠𝜗2 [𝑘𝑥 + 𝑙𝑦 −
𝑒4

𝑒2
𝑙𝑡]. …………….. (34) 

 

Case 4.3.2: 

When Γ1 = 4Θ2, Γ2 = 4(−2Θ2 + 1), Γ3 = 4(1 − Θ2), 

 𝑢6 = 𝑑𝜗2 [𝑘𝑥 + 𝑙𝑦 −
𝑒4

𝑒2
𝑙𝑡]. …………….. (35) 

 

Case 4.3.3: 

When Γ1 = −4, Γ2 = −4(Θ2 − 2), Γ3 = 4(Θ2 − 1), 

𝑢7 = 𝑓𝜗2 [𝑘𝑥 + 𝑙𝑦 −
𝑒4

𝑒2
𝑙𝑡]. …………………………... (36) 
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Case 4.3.4: 

When Γ1𝑣 < 0, Γ2 > 0, Γ3 = 0 

𝑢8 = −
Π2

Π1
sech2 [

√Π2

2
(𝑘𝑥 + 𝑙𝑦 −

𝑒4

𝑒2
𝑙𝑡)]. …………….. (37) 

 

Case 4.3.5: 

When Γ1𝑣 > 0, Γ2 > 0, Γ3 = 0 

 𝑢9 =
Π2

Π1
csch2 [

√Π2

2
(𝑘𝑥 + 𝑙𝑦 −

𝑒4

𝑒2
𝑙𝑡)]. …………..….. (38) 

 

Case 4.3.6: 

When Γ2 < 0, Γ3 = 0 

 𝑢10 =
Π2

Π1
sec2 [

√Π2

2
(𝑘𝑥 + 𝑙𝑦 −

𝑒4

𝑒2
𝑙𝑡)]. ………….…. (39) 

 

The equation (33) leads us to a variety of similarity solutions from equation (34) to equation (39), each 

characterized by different combinations of constants Θ, 𝜗, 𝑒1, 𝑒2, 𝑒3 and 𝑒4. 

 

5. Conservation laws of ZK-BBM equation 

The conservation laws [1, 22] of the ZK-BBM equation are obtained by using the adjoint equation and its 

symmetries. For equation (1), the adjoint equation takes the form: 

𝑧𝑡 + 𝑧𝑥 + 𝑝𝑢𝑧𝑥 + 𝑞𝑧𝑥𝑥𝑡 + 𝑞𝑧𝑦𝑦𝑥 = 0, ………………. (40) 

 

and the Lagrangian associated with this equation is: 

ℒ = 𝑧(𝑢𝑡 + 𝑢𝑥 + 𝑝𝑢𝑢𝑥 + 𝑞𝑢𝑥𝑥𝑧𝑡 + 𝑞𝑢𝑦𝑦𝑧𝑥). ..…….. (41) 

 

To derive the conservation laws, the Lie point, Lie-Backlund, and non-local symmetries of (1) and its adjoint 

equation [23] are very important. The components of the conservation vector (T1,  T2,  T3) are defined as follows: 

 T𝑖 = 𝜉𝑖ℒ + 𝑊𝛼 [
∂ℒ

∂𝑢𝑖
𝛼 − 𝐷𝑗 (

∂ℒ

∂𝑢𝑖𝑗
𝛼 ) + 𝐷𝑗𝐷𝑘 (

∂ℒ

∂𝑢𝑖𝑗𝑘
𝛼 )]

  +𝐷𝑗(𝑊𝛼) [
∂ℒ

∂𝑢𝑖𝑗
𝛼 − 𝐷𝑘 (

∂ℒ

∂𝑢𝑖𝑗𝑘
𝛼 )] + 𝐷𝑗𝐷𝑘(𝑊𝛼)

∂ℒ

∂𝑢𝑖𝑗𝑘
𝛼  (𝑖 = 1,2,3),

 ……………….... (42) 

 

Where 𝑊𝛼 = 𝜂𝛼 − 𝜉𝑗𝑢𝑗
𝛼 is a Lie characteristic function. 

The conserved vector related to an operator 𝒱 given by: 

𝒱 = 𝜉1(𝑥, 𝑦, 𝑡, 𝑢)
∂

∂𝑥
+ 𝜉2(𝑥, 𝑦, 𝑡, 𝑢)

∂

∂𝑦
+ 𝜉3(𝑥, 𝑦, 𝑡, 𝑢)

∂

∂𝑡
 + 𝜂(𝑥, 𝑦, 𝑡, 𝑢)

∂

∂𝑢
. ………. (43) 

 

The conservation law equation is represented in the following form: 

 𝐷𝑡( T1) + 𝐷𝑥( T2) + 𝐷𝑦( T3) = 0, …………….. (44) 

 

Where the conserved vector T = (T1,  T2,  T3) is given by the expression in equation (42). The components of 

this conservation vector are further defined as follows: 

 T1 = 𝑤1[𝑧(1 + 𝑝𝑢) − 𝐷𝑥(𝑞𝑧𝑧𝑡)] + 𝑘𝑢𝑦𝑦𝑧𝑤2 + 𝑞𝑧𝑧𝑡𝐷𝑥(𝑤1),

T2 = (𝜉1)2𝐿 − 𝐷𝑦(𝑘𝑧𝑧𝑥)𝑤1 + 𝑞𝑧𝑧𝑥𝐷𝑦(𝑤1),

 T3 = (𝜉1)3𝐿 + 𝑤1 + 𝑞𝑢𝑥𝑥𝑧𝑤2.

 …………….. (45) 

 

The system of equations (45) defines the conservation law of equation (1) and equation (40), associated with any 

operator 𝑧 accepted by equation (1). 

 

We investigate a more detailed computation for a specific operator 𝑧 defined as: 

𝑧 =
1

2
𝑦 ∂𝑦 + 𝑡 ∂𝑡 −

𝑝𝑢+1

𝑝
∂𝑢. ………………….... (46) 

 

 

The expressions for 𝑤1 and 𝑤2 are given by: 

 𝑤1 = −
𝑝𝑢 + 1

𝑝
−

1

2
𝑦𝑢𝑦 − 𝑡𝑢𝑡, … … … … … . . (47) 

 𝑤2 =
1

2
𝑧 −

1

2
𝑦𝑧𝑦 − 𝑡𝑧𝑡 . … … … … … . . … … . . (48)
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Substituting these into equation (42) and evaluating for the sixth-order Lagrangian equation (41), we obtain the 

components of the conservation vector as described as: 

 

 T1 = − (𝑢 +
1

𝑝
+

1

2
𝑦𝑢𝑦 + 𝑡𝑢𝑡) (𝑧 + 𝑝𝑢𝑧 − 𝑞𝑧𝑥𝑧𝑡 − 𝑞𝑧𝑧𝑡𝑥)

  +𝑞𝑢𝑦𝑦𝑧 (
1

2
𝑧 −

1

2
𝑦𝑧𝑦 − 𝑡𝑧𝑡) − 𝑞𝑧𝑧𝑡 (𝑢𝑥 +

1

2
𝑦𝑢𝑦𝑥 + 𝑡𝑢𝑡𝑥) ,

 T2 =
1

2
𝑦𝑧(𝑢𝑡 + 𝑢𝑥 + 𝑝𝑢𝑢𝑥 + 𝑞𝑢𝑥𝑥𝑧𝑡 + 𝑞𝑢𝑦𝑦𝑧𝑥) − 𝑞(𝑧𝑦𝑧𝑥 + 𝑧𝑧𝑥𝑦)

  ⋅ (𝑢 +
1

𝑎
+

1

2
𝑦𝑢𝑦 + 𝑡𝑢𝑡) − 𝑞𝑧𝑧𝑥 (𝑢𝑦 +

1

2
𝑢𝑦 +

1

2
𝑦𝑢𝑦𝑦 + 𝑡𝑢𝑡𝑦) ,

 T3 = 𝑡𝑧(𝑢𝑡 + 𝑢𝑥 + 𝑝𝑢𝑢𝑥 + 𝑞𝑢𝑥𝑥𝑧𝑡 + 𝑞𝑢𝑦𝑦𝑧𝑥)

  − (𝑢 +
1

𝑝
+

1

2
𝑦𝑢𝑦 + 𝑡𝑢𝑡) + 𝑞𝑢𝑥𝑥𝑧 (

1

2
𝑧 −

1

2
𝑦𝑧𝑦 − 𝑡𝑧𝑡) .

 ……….. (49) 

 

So, these conserved vectors satisfy the equation (1). 

 

6. CONCLUSION 
Finally, this work studied the classical Lie 

symmetry approach as applied to the (ZK-BBM) 

equation, providing insight on its symmetries, 

reductions, exact solutions, and conservation laws. We 

determined the ZK-BBM equation’s Lie point 

symmetries using the classical Lie symmetry approach, 

exposing its fundamental invariant characteristics. These 

symmetries were identified by certain vector fields, 

which made it possible for us to solve the problem 

exactly. The ZK-BBM equation’s simpler versions were 

produced via reductions, making it easier to look at the 

dynamics of the equation under various circumstances. 

Further, we explored similarity solutions to the ZKBBM 

equation, leveraging the reduced equations to derive 

explicit solutions. Through various cases and 

mathematical techniques such as the 𝐺′/𝐺-expansion 𝑚 

differential equations, we obtained a range of new 

explicit solutions, each revealing distinct aspects of the 

equation’s behaviour. Finally, we investigated the 

conservation laws associated with the ZK-BBM 

equation, utilising the adjoint equation and its 

symmetries. By examining the Lagrangian and utilising 

Noether’s theorem, we uncovered conserved quantities 

that provide valuable insights into the system’s dynamics 

and energy conservation properties.  

 

Acknowledgments: The authors would like to thank the 

staff members of the faculty for their continuous support. 

 

Author Contribution: All authors contributed equally 

to this work and have approved the final version of the 

manuscript.  

 

Data Availability 

The datasets used in this study are not publicly 

available due to confidentiality reasons but can be 

requested from the corresponding author. Participants 

only consented to the publication of aggregated data. 

 

Conflict of Interests: The authors affirm that there is no 

conflict of interest regarding the publication of this 

paper. 

 

 

REFERENCES 
1. Shamaoon, A., Ali, Z., & Maqbool, Q. (2023). 

Conservation laws, exact solutions and nonlinear 

dispersion: A lie symmetry approach. Journal of 

AppliedMath, 1(1), 95-95. 

2. Shamaoon, A., & Faruq, A. (2024). Analysis of 

symmetries, conservation laws, and exact solutions 

of (1+ 1) reaction-diffusion equation. International 

Journal of Science Academic Research, 5(7), 

7772, 7783. 

3. Olver, P. (1993). Applications of Lie Groups to 

Differential Equations. Springer-Verlag. 

4. Bluman, G. W., & Kumei, S. (2013). Symmetries 

and differential equations (Vol. 81). Springer 

Science & Business Media. 

5. Cantwell, B. J. (2002). Introduction to symmetry 

analysis. Cambridge University Press.  

6. Gao, B., & Tian, H. (2014). Lie symmetry 

reductions and exact solutions to the Rosenau 

equation. Advances in Mathematical 

Physics, 2014(1), 714635. 

7. Craddock, M., & Platen, E. (2004). Symmetry group 

methods for fundamental solutions. Journal of 

Differential Equations, 207(2), 285-302. 

8. Craddock, M., & Lennox, K. A. (2007). Lie group 

symmetries as integral transforms of fundamental 

solutions. Journal of Differential Equations, 232(2), 

652-674. 

9. Clarkson, P. A., & Kruskal, M. D. (1989). New 

similarity reductions of the Boussinesq 

equation. Journal of Mathematical Physics, 30(10), 

2201-2213.  

10. Clarkson, P. A. (1989). New similarity solutions for 

the modified Boussinesq equation. Journal of 

Physics A: Mathematical and General, 22(13), 

2355. 

11. Xin, X. P., Liu, X. Q., & Zhang, L. L. (2010). 

Explicit solutions of the Bogoyavlensky–

Konoplechenko equation. Applied mathematics and 

computation, 215(10), 3669-3673. 

12. Xin, X. P., Liu, X. Q., & Zhang, L. L. (2011). 

Symmetry Reduction, Exact Solutions and 

Conservation Laws of the Modified Kadomtzev—

Patvishvili-II Equation. Chinese Physics 

Letters, 28(2), 020201. 



 

    

Adnan Shamaoon et al, Sch J Phys Math Stat, Oct, 2024; 11(10): 138-145 

© 2024 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          145 

 

 

13. Shamaoon, A., Agarwal, P., Cesarano, C., & Jain, S. 

(2023). Approximate Symmetries and Conservation 

Laws for Mechanical Systems Described by Mixed 

Derivative Perturbed PDEs. Žurnal Ìnženernih 

Nauk, 10(2), 8-15. 

14. Jassim, H. K., Ahmad, H., Shamaoon, A., & 

Cesarano, C. (2021). An efficient hybrid technique 

for the solution of fractional-order partial 

differential equations. Carpathian Mathematical 

Publications, 13(3), 790-804.  

15. Cesarano, C., Ramírez, W., Díaz, S., Shamaoon, A., 

& Khan, W. A. (2023). On Apostol-type Hermite 

degenerated polynomials. Mathematics, 11(8), 

1914. 

16. Wazwaz, A. M. (2005). Compact and noncompact 

physical structures for the ZK–BBM 

equation. Applied Mathematics and 

Computation, 169(1), 713-725.  

17. Wazwaz, A. M. (2008). The extended tanh method 

for new compact and noncompact solutions for the 

KP–BBM and the ZK–BBM equations. Chaos, 

Solitons & Fractals, 38(5), 1505-1516.  

18. Abdou, M. A. (2007). The extended F-expansion 

method and its application for a class of nonlinear 

evolution equations. Chaos, Solitons & 

Fractals, 31(1), 95-104.  

19. Song, M., & Yang, C. (2010). Exact traveling wave 

solutions of the Zakharov-Kuznetsov–Benjamin-

Bona-Mahony equation. Applied Mathematics and 

Computation, 216(11), 3234-3243. 

20. Wang, M., Li, X., & Zhang, J. (2008). The (G′ G)-

expansion method and travelling wave solutions of 

nonlinear evolution equations in mathematical 

physics. Physics Letters A, 372(4), 417-423.  

21. Elhanbaly, A., & Abdou, M. A. (2007). Exact 

travelling wave solutions for two nonlinear 

evolution equations using the improved F-expansion 

method. Mathematical and Computer 

Modelling, 46(9-10), 1265-1276. 

22. Shamaoon, A. (2024). Approximate Lie Symmetries 

and Conservation Laws of Third-Order Nonlinear 

Perturbed Korteweg–de Vries Equation. GPH-

International Journal of Mathematics, 7(7), 1–17.  

23. Wu, Y., & Liu, Z. (2013). Bifurcation Phenomena 

of Nonlinear Waves in a Generalized Zakharov‐

Kuznetsov Equation. Advances in Mathematical 

Physics, 2013(1), 812120. 

 


