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Abstract  Review Article 
 

Photocatalysis, particularly in energy conversion and environmental remediation, has become a significant technology 

due to its ability to utilise solar energy to degrade pollutants and produce clean energy. At the core of developing 

effective photocatalysts are quantum chemistry methods, most notably Density Functional Theory (DFT), which can be 

employed to simulate electronic structures and predict catalytic behaviour. This review paper discusses the theoretical 

methods used in photocatalysis, focusing on DFT and its developments, including hybrid functionals, meta-GGA, and 

their range-separated hybrid models. Furthermore, we discuss multi-configurational and perturbation theory methods, 

which are used for systems with strong electron correlations, and integrating DFT with machine learning to accelerate 

the discovery of new photocatalytic materials. The paper focuses on DFT's role in synthesising new materials, notably 

metal-organic frameworks (MOFS). It presents their applications in water-splitting photocatalysis, CO2 reduction, and 

the degradation of organic pollutants. Finally, we review recent developments in computational methods used to model 

the mechanisms and reactions of photocatalysis, focusing on the need to optimise the light-matter interface. Despite the 

immense promise, challenges persist in accurately modelling complex photocatalysis systems, necessitating ongoing 

advances in computational methods. The advancement of photocatalysis will depend on aligning theory and experiment 

and refining computational models to optimise the efficiency and scalability of catalysis processes. 

Keywords: Photocatalysis, Density Functional Theory (DFT), Hybrid Functionals, Metal-Organic Frameworks 

(MOFs), Photocatalytic Water Splitting, CO2 Reduction, Computational Chemistry, Machine Learning, 

Photodegradation, Quantum Chemistry. 
Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 

author and source are credited. 

 

1. INTRODUCTION 
Photocatalysis is an emerging area of research 

that focuses on optimising and controlling chemical 

reactions using radiant energy, especially light. The 

acceleration of these reactions is achieved either by 

direct light interaction or by inducing excitation in a 

substance that catalytically facilitates the primary 

response [1, 2]. This dynamic field holds great promise 

in addressing energy-related challenges [3], and 

environmental concerns [4–6], by mimicking complex 

processes in natural photochemistry and incorporating 

sustainable materials. 

 

Photocatalysts are molecular systems, including 

nanoparticles, surfaces, or organic/inorganic molecules, 

with specific semiconducting properties such as light 

absorption, charge transfer, and particular electronic and 

geometric characteristics. Researchers are making 

notable strides in developing innovative light-responsive 

materials and gaining a deeper understanding of their 

mechanisms. These materials can potentially 
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revolutionise the photocatalysis field by enhancing the 

efficiency of processes and broadening their range of 

applications [7, 8]. Photocatalysis holds considerable 

promise in various scientific fields, including energy, 

environmental solutions, and advancements in health and 

materials. A key application is its ability to utilise 

sunlight to produce hydrogen fuel. This clean and 

renewable energy source is essential for reducing 

pollution and decreasing dependence on non-renewable 

fossil fuels. 

 

In addition to its energy-related applications, 

photocatalysis also holds significant potential for light 

signal detection, which could lead to enhanced 

communication and security technologies. By detecting 

light intensity, wavelength, or colour, photocatalysis can 

support optical communication, imaging, and 

encryption, enhancing information and security systems. 

Furthermore, photocatalysis plays a significant role in 

environmental preservation, mainly through its ability to 

purify water [9], and air [10], removing pollutants and 

pathogens. This capability directly improves 

environmental quality and human health, making it an 

essential tool for achieving the global goal of clean and 

safe resources. Additionally, photocatalysis makes 

significant contributions to materials science by enabling 

the creation of innovative compounds and materials, 

ranging from pharmaceuticals and polymers to 

nanomaterials and catalysts [7]. These advancements 

have applications across industrial [11], and biomedical 

sectors [12], highlighting the broad impact of 

photocatalysis. 

 

Moreover, photocatalysis can modify surface or 

interface properties, directly impacting the functionality 

and performance of devices such as batteries [13], 

capacitors, and solar cells [14]. This capability not only 

drives technological progress but also boosts the 

efficiency and sustainability of these devices, ultimately 

improving their overall reliability. A key area of focus 

within photocatalysis is the enhancement of solar cells 

[15], with researchers working to improve the efficiency 

and stability of converting solar energy into electrical 

energy, aiming for significant advancements in the 

development of sustainable and efficient energy 

solutions [16]. In summary, photocatalysis stands out as 

a versatile and promising field, poised to address 

complex global challenges across a wide range of 

scientific and technological sectors. 

 

In photocatalysis, computational modelling 

plays a crucial role, providing a foundation for 

understanding the complex mechanisms underlying 

photocatalysis and facilitating the design of 

semiconductor photocatalyst systems [17]. Simulations 

that capture the dynamics of numerous electrons, nuclei, 

and molecules within condensed matter [18], facilitate 

in-depth studies of atomic and electronic structures, 

along with the associated properties of nanostructures at 

sub-nanometer scales [19]. This capability enables the 

development of innovative theoretical models for 

photocatalyst materials and interfaces, which are crucial 

for the strategic design and engineering of 

semiconductor photocatalyst systems [20, 21]. 

 

Quantum chemical methods, such as ab initio 

and semi-empirical approaches, play a vital role in 

photocatalysis modeling [22–26]. These methods are 

essential for capturing and representing various chemical 

properties at the quantum level. By utilising these 

techniques, researchers gain valuable insights into the 

intricate processes of photocatalysis. First-principles 

calculations on high-performance computing platforms 

can establish a virtual laboratory to explore the nuanced 

interactions between physical properties, such as atomic 

structures, defects, interfaces, and the electronic 

structure of materials. This approach is crucial for testing 

new concepts and ideas in the development of efficient 

photocatalyst materials and devices. Additionally, 

computational modeling helps in the design and 

optimisation of metal–organic frameworks (MOFs) for 

photocatalysis [27, 28], focusing on tailoring band edge 

positions to achieve optimal photocatalytic performance. 

Moreover, computational fluid dynamics (CFD) 

modelling plays a crucial role in designing and 

optimising microreactors used in photoredox catalysis 

[29,30], thereby deepening our understanding of reagent 

interactions and the impact of light on the reaction 

medium. In summary, computational modeling is an 

indispensable tool that drives the advancement of 

photocatalysis, offering comprehensive insights into 

light–matter interactions and facilitating the discovery of 

novel materials and devices with broad applications. 

 

Chemical kinetics methods [31, 32], are also 

crucial in photocatalysis, where multiple simultaneous 

reactions frequently occur. These simulations rely on the 

energetics of intermediate compounds, which can be 

calculated using quantum mechanics. The complexities 

of photocatalytic reaction kinetics are influenced by 

various factors, including the nature of the catalyst, the 

reactants involved, and the intensity of light. External 

factors, such as impurities, temperature, and the pH of 

the reaction medium, can also influence the kinetics of 

photocatalytic reactions. Studying chemical kinetics 

within the context of photocatalysis is vital for 

understanding reaction mechanisms and optimising the 

performance of photocatalytic systems. 

 

Although conventional computational methods 

have proven helpful in modelling photocatalytic 

processes, their effectiveness is constrained by the 

inherent complexity of the studied reactions. 

Overcoming these challenges requires primarily refining 

the precision and applicability of these methods [33]. 

Precision is crucial due to the intricate nature of 

photocatalysis, which involves complex molecular-level 

interactions [34]. Traditional computational techniques 

often struggle to capture these intricate dynamics, 

necessitating improvements to more accurately represent 
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the interplay among electrons, nuclei, and molecules 

within photocatalytic systems. Simultaneously, it is 

essential to enhance the applicability of computational 

methods, given the diverse and dynamic characteristics 

of photocatalytic processes. Researchers are developing 

methodologies that can accommodate various 

conditions, materials, and environmental factors, making 

the models more versatile and applicable to real-world 

scenarios [35–37]. In essence, the challenge lies not only 

in improving the accuracy of these methods but also in 

increasing their adaptability to effectively address the 

wide range of scenarios encountered in photocatalysis 

research. 

 

This review concludes by examining the 

promising future of modelling in photocatalysis research, 

with a primary focus on the potential of multiscale 

modelling approaches [38, 39], as well as advancements 

in machine learning [40, 41], and innovative quantum 

algorithms [42], that aim to overcome existing 

challenges. In this context, multiscale modeling is a vital 

tool for bridging different levels of description, capturing 

both interactions and feedback mechanisms. For 

example, it integrates quantum mechanical calculations 

of the electronic structure and optical properties of 

photocatalytic materials with kinetic models of reaction 

pathways and rates. Additionally, it accounts for 

environmental factors such as temperature, pressure, and 

solvent effects, providing a comprehensive 

understanding of photocatalytic processes and guiding 

the rational design of materials and systems. Meanwhile, 

machine learning and artificial intelligence are making 

significant contributions to the field by facilitating the 

discovery of new photocatalytic materials, optimising 

reaction conditions, and extracting meaningful patterns 

from large and noisy datasets. By leveraging existing 

experimental and simulation data, predictive models 

could potentially accelerate material screening and 

evaluation while identifying key factors that influence 

photocatalytic activity and selectivity. Quantum 

computing offers a paradigm shift, providing exceptional 

accuracy and speed in solving quantum mechanical 

equations related to electronic and optical properties. By 

overcoming the scalability and complexity limitations of 

classical computing, quantum computing enables the 

simulation of large, realistic photocatalytic systems and 

explores quantum phenomena like entanglement, 

superposition, and tunneling. This opens new 

possibilities beyond traditional tools, thereby expanding 

the horizons of photocatalysis research. 

 

Although multiscale modelling is an 

extensively used technique, ML/AI models are still 

developing significantly, and quantum computing is in 

its early stages. Despite their varying levels of maturity, 

these techniques collectively drive advancements in 

photocatalysis research. By enhancing clarity and 

coherence, this review examines how modelling methods 

[43, 44] influence the photocatalysis field. 

 

2. Basics of Photocatalysis 

The fundamental principles of photocatalysis 

involve the interaction of light with matter, the creation 

of electron–hole pairs, and the subsequent redox 

reactions that occur on the photocatalyst surface. The 

foundation of photocatalytic process modeling is rooted 

in band structure theory [45]. This concept, derived from 

solid-state physics, explains the distribution of electron 

energy levels within solids. According to band theory, 

these energy levels are organised into bands, separated 

by "band gaps"—regions that lack electron states. 

 

The photocatalytic process begins with the 

generation of an electron–hole pair, induced by light (a 

photogenerated exciton) within the catalyst (e.g., a 

molecule, nanoparticle, or surface). If the photon energy 

is equal to or greater than the photocatalyst's bandgap, an 

electron from the catalyst's valence band is excited and 

moved to the unoccupied conduction band, creating a 

positive hole in the valence band. This separation of 

charges generates a potential that facilitates redox 

reactions on the surface of the photocatalyst. The 

electrons in the conduction band can be transferred to an 

electron acceptor (1), while the hole can either oxidise a 

donor molecule or reduce an oxidant (2): 

e⁻ + A → A⁻· (1) 

h⁺ + H·D → H⁺ + D (2) 

 

This process generates highly reactive 

intermediate radicals that react with reactant molecules 

on the photocatalyst surface, leading to the formation of 

the desired products [46–48]. The band gap of the 

material influences the efficiency of photocatalytic 

processes. A smaller band gap allows the absorption of a 

broader spectrum of light; however, the band gap must 

be large enough to provide the energy required for the 

reactions. Bandgap engineering is a strategy used to 

optimise the band gap for enhanced light absorption and 

charge carrier dynamics [49]. 

 

Two of the most well-known photocatalytic 

processes under active research and development are 

water splitting (3) [50, 51], and the reduction of carbon 

dioxide (6) [52]: 

H₂O + hν → 2H₂ + ½O₂ (3) 

2H⁺ + 2e⁻ → 2H₂ (4) 

H₂O + 2h⁺ → 2H⁺ + ½O₂ (5) 

CO₂ + 2H + hν → 2H₂ + O₂ (6) 

CO₂ + 2H + hν → CO + H₂O (7) 

CO₂ + 4H + hν → C + 2H₂O (8) 

 

Water cannot directly absorb sunlight in the 

first reaction [53], as it is transparent across the entire 

spectrum. The photon energy is transferred to water 

molecules via the initial absorption of sunlight by the 

catalyst, which is then transferred to H₂O [54]. This leads 

to a four-step process: first, the absorption of a photon 

with energy more significant than the band gap of the 

photocatalyst, resulting in the generation of an electron–

hole pair; second, the separation of the photoexcited 



 
 

 

 

 

 

 

Aqidat Irfan et al, Sch J Eng Tech, Apr, 2025; 13(4): 264-287 

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          267 

 

 

 

 

electron and hole; third, their reaction with water 

molecules to yield hydrogen (reduction, (4)) and oxygen 

(oxidation, (5)); and finally, the release of the produced 

hydrogen and oxygen from the photocatalyst surface. 

The photocatalyst must have a wide band gap (greater 

than 1.23 ev) to split water efficiently. However, factors 

such as internal material resistance and the overpotential 

of the water-splitting reaction increase the necessary 

band gap, which can range from 1.6 to 2.4 eV [55, 56]. It 

is also important to note that water splitting is an energy-

demanding process with ∆H > 0. 

 

Titanium dioxide (TiO₂) is an example of a 

semiconductor with an appropriate band structure. Its 

bandgap of 3.2 eV enables it to absorb ultraviolet light 

and generate electron–hole pairs. When irradiated with 

light, electrons are excited from the valence band to the 

conduction band, leaving behind positive holes. These 

electrons and holes then migrate to the surface of TiO₂ 

and react with water molecules [57]. Natural 

photosynthesis in plants and certain bacteria also 

involves water splitting, facilitated by absorbing energy 

from four photons, which is converted into chemical 

energy through a complex biochemical pathway [58]. 

This process requires higher energy input from photons, 

making it more challenging to achieve compared to 

photochemical splitting. 

 

The second reaction in photocatalysis is a 

multistep process that involves several intermediates and 

products, depending on the catalyst's properties and the 

reaction conditions [6-8]. The pathways and mechanisms 

involved in CO₂ reduction are influenced by various 

factors, including the type of catalyst material, its 

structure, morphology, composition, surface area, defect 

density, and the applied potential, ph, temperature, 

pressure, solvent, electrolyte, and gas diffusion [52, 59]. 

To analyse such reactions, energy diagrams for possible 

intermediates are helpful, as they aid in predicting the 

most promising pathways among parallel processes [60]. 

Modifying the catalytic surface, through defects, 

vacancies, or additives, can optimise and control the 

reaction. Such modifications can alter the electronic 

structure, adsorption properties, and catalytic activity of 

the catalyst [61]. 

 

➢ Key Steps in the Photocatalytic Reaction Process 

The photocatalytic reaction process can generally be 

divided into the following significant steps [62–64]: 

 

• Adsorption: 

The reactant molecule adsorbs onto the 

semiconductor surface, forming a physical or chemical 

bond with the catalyst. This step is crucial as it facilitates 

the subsequent interactions between the molecule and the 

catalyst. The adsorption process is influenced by the 

catalyst's surface area, charge, and affinity for the 

reactant. 

 

 

• Exciton Formation: 

When the catalyst absorbs light, typically in the 

UV or visible spectrum, it generates electron–hole pairs 

through a process called exciton formation. The excited 

electrons transition from the valence band to the 

conduction band, leaving behind positive holes in the 

valence band. These electron–hole pairs, also known as 

excitons, are highly reactive but have a short lifetime. 

 

• Reaction: 

The excited electrons or holes react with the 

adsorbed molecule, either directly or indirectly. In direct 

reactions, electrons or holes transfer from the catalyst to 

the molecule, causing oxidation or reduction. Indirect 

reactions generate reactive oxygen species (ROS), such 

as hydroxyl radicals, superoxide anions, or hydrogen 

peroxide, by reacting excited particles with water or 

oxygen. These ROS then attack the adsorbed molecule, 

leading to its degradation or mineralisation. 

 

• Over-Reaction: 

The reaction continues until the molecule is 

completely broken down into simple and harmless 

products, such as water, carbon dioxide, or inorganic 

ions. This step, known as mineralisation or complete 

oxidation, ensures that no toxic intermediates remain in 

the solution, thereby making the process 

environmentally safe. 

 

• Desorption: 

The final step involves releasing reaction 

products from the catalyst surface. This desorption frees 

up the active sites on the catalyst for new adsorption and 

reaction cycles. The efficiency of desorption depends on 

several factors, including the concentration of reactants, 

temperature, and ph. 

 

Recent years have seen significant progress in 

photocatalysis, particularly in enhancing the 

performance and efficiency of photocatalysts. 

Researchers have focused on modifying the structure of 

photocatalysts by exploring new materials, including 

perovskites [67,68], metal–organic frameworks [69], and 

nanomaterials [70]. The development of hybrid systems, 

such as coupling photocatalysts with electrocatalysts 

[71], or photoelectrocatalysts, has also been a promising 

avenue for improving overall photocatalytic 

performance. These innovations are paving the way for 

more efficient applications in environmental remediation 

[65], energy production [66], and chemical synthesis. 

 

3. Quantum Chemical Methods in Photocatalysis: Ab 

Initio, DFT, Semi-Empirical 

Ab initio quantum chemical methods offer 

significant advantages in understanding and enhancing 

photocatalytic processes. These methods enable the 

analysis of precursor characteristics, such as catalyst 

bandgaps, the density of states, and adsorption spectra. 

These provide initial insights that can later be used in 

machine learning models. Additionally, these methods 
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allow for a detailed examination of the entire 

photocatalytic process [72, 73]. 

 

➢ Overview of Ab Initio Methods 

Ab initio quantum chemical methods involve 

solving the electronic Schrödinger equation from first 

principles, without relying on experimental data. This 

enables the accurate prediction of various properties and 

behaviors in photocatalytic reactions. Several ways in 

which these methods contribute to the field include: 

 

• Detailed Electronic Structure Analysis: 

Ab initio methods provide precise descriptions 

of the electronic structure of molecules involved in 

photocatalysis. This information is crucial for predicting 

absorption energy, charge transfer, and the dynamics of 

intermediate compounds during photochemical reactions 

[74–76]. 

 

• Mechanistic Insight: 

These methods enable an in-depth 

understanding of the step-by-step mechanisms of 

photocatalytic reactions, including light absorption, 

charge transfer, and bond breaking. This insight 

enhances our understanding of the complex processes at 

play [24–80]. 

 

• Prediction of Excited States: 

Ab initio methods can predict the properties of 

excited electronic states. This is crucial for 

understanding how light energy is converted into 

chemical reactions—a key aspect of photocatalysis [81–

83]. 

 

• Screening and Design of Catalysts: 

Ab initio methods can calculate properties such 

as reaction barriers and energetics, helping to identify 

optimal catalyst structures that enhance photocatalytic 

activity and efficiency. This capability is instrumental in 

the rational design of catalysts [84–86]. 

 

• Quantitative Prediction of Reaction Rates: 

By combining first-principles methods with 

kinetic models, ab initio methods enable the prediction 

of reaction rates, facilitating the design of photocatalysts 

with enhanced performance [87]. 

 

• Insights into Reaction Mechanism Dynamics: 

Ab initio molecular dynamics simulations offer 

real-time insights into the movement of atoms and 

electrons during photocatalytic reactions. This dynamic 

view helps understand how the photocatalytic processes 

unfold at the atomic scale [88–90]. 

 

• Tailoring Material Properties: 

These methods facilitate the optimisation of 

material properties, such as band gaps and surface 

reactivity, which are essential for designing materials 

that efficiently promote the desired photochemical 

reactions [91–94]. 

➢ Rational Design of Photocatalysts 

Ab initio modeling ultimately enables the 

rational design of photocatalysts with enhanced 

efficiency and selectivity. By providing a comprehensive 

understanding of reaction mechanisms and guiding 

catalyst selection, these methods offer a complete picture 

of the electronic and dynamic properties of 

photocatalysts. Quantum chemical methods provide a 

comprehensive toolkit for modeling photocatalytic 

systems, thereby advancing sustainable energy and 

environmental solutions. They encompass a wide range 

of phenomena, including chemical reactions, excited-

state dynamics, and light absorption and emission. 

Despite the advantages, modeling photocatalytic 

processes presents significant challenges due to their 

complex and multiscale nature. Wave function (WF) 

methods, although accurate and robust, are often 

impractical for large and complex systems due to their 

high computational cost and low scalability. As a result, 

methods utilising Density Functional Theory (DFT) have 

become more favorable alternatives. 

 

While DFT is computationally more feasible for 

studying larger systems, it is still an approximation. 

Modern DFT functionals, although widely used, must be 

tailored to specific molecular systems and processes to 

ensure accuracy. These approximations should be used 

cautiously, especially when high precision is required. 

 

➢ Variational and Perturbation Methods in 

Photocatalysis 

The Schrödinger equation, in its simplest, time-

independent form, has various solutions based on 

different methods and approximations. These methods 

can be divided into two main categories: 

 

• Variational Methods: 

These methods are based on the principle of 

minimising the energy of a trial wave function 

(represented in one determinant form in the case of 

DFT). They are commonly used to study the electronic 

structure and properties of photoactive materials, 

including absorption spectra, excited states, and reaction 

pathways in photocatalysis. 

 

• Perturbation Methods: 

Perturbation methods assume that the system’s 

Hamiltonian can be divided into a solvable part and a 

perturbation term, which is treated as a minor correction 

to the solvable part. While these methods are also used 

in photocatalysis, they are less commonly employed 

compared to variational methods. 

 

Ab initio quantum chemical methods, including 

DFT, play a crucial role in advancing photocatalysis by 

providing insights into reaction mechanisms, excited 

states, and catalyst design. These methods enable the 

development of photocatalysts with improved efficiency 

and selectivity. While they face challenges, such as high 

computational costs and the need for approximations, 
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they remain a powerful tool for modeling and optimising 

photocatalytic systems in sustainable energy and 

environmental applications. 

 

➢ Variational and Perturbation Methods in 

Photocatalysis Modeling 

In photocatalysis modeling, variational 

methods offer invaluable insights into photoactive 

materials' electronic structure and properties. These 

methods facilitate the exploration of aspects such as 

excited states and the effects of environmental factors on 

photoinduced processes, which are often difficult to 

observe experimentally. Variational methods are 

instrumental in approximating the ground state of a 

quantum system and can, in some cases, also be used to 

calculate excited states. The wave function, which 

mathematically represents the quantum state of a system, 

can be expressed in various forms, each differing in the 

number of configurations and their specific 

representation. 

 

The simplest form of wave function is the 

single-configuration wave function, which is used in 

methods such as Hartree–Fock and some variants of 

Density Functional Theory (DFT) [97]. In these 

methods, the wave function is approximated by a single 

Slater determinant, which represents a specific 

configuration of electrons. However, the single-

configuration approximation often fails to provide an 

accurate representation of complex electron correlation 

effects, electron transfer, and other crucial processes in 

photocatalysis. This limitation arises because the single-

configuration approximation cannot capture multi-

electronic phenomena that play a vital role in the 

efficiency of photocatalytic reactions. 

 

For instance, when conducting computational 

analysis on metal–organic frameworks (MOFs), which 

are commonly used in photocatalysis, the single-

configuration approximation proves inadequate. MOFs 

contain transition metals that serve as active sites within 

their structure, often leading to nearly degenerate 

electron configurations. These metals give rise to multi-

configurational wave functions for excited states, 

making accurate predictions more challenging [98, 99]. 

This complexity requires methods that consider different 

molecular configurations and optimise them 

accordingly. 

 

➢ Multi-Configurational Methods 

To address these challenges, multi-

configurational methods represent the molecular wave 

function as a combination of different configurations, 

which are then optimised. One such method is 

Configuration Interaction (CI), which uses a predefined 

set of orbitals and determines the configuration 

coefficients through variational procedures. However, 

the Complete Active Space Self-Consistent Field 

(CASSCF) method is considered a more advanced multi-

configurational approach. This method optimises both 

the orbitals and CI coefficients’ self-consistency, 

generating an entire CI wavefunction within the selected 

active space. CASSCF is particularly useful for 

analysing systems with multi-reference character or non-

dynamical, static, or strong correlation, such as 

photocatalytic MOFs with tunable optical properties 

[106]. 

 

Although CASSCF is highly effective, it is 

computationally demanding for large systems. To 

mitigate this issue, approximations like restricting the 

active space or employing the Density Matrix 

Renormalization Group (DMRG) technique [108], are 

often used to enhance its efficiency. These methods 

enable researchers to explore complex photocatalytic 

systems more efficiently, although they require 

substantial computational resources. 

 

➢ Coupled Cluster (CC) Methods 

Another powerful approach is the Coupled 

Cluster (CC) method, which accounts for electron 

correlations by systematically including clusters of 

excitations based on a Hartree–Fock (HF) reference 

function. The accuracy of CC improves by including 

higher-order excitations, such as CCSD (Coupled 

Cluster Singles and Doubles) and CCSDT (Coupled 

Cluster Singles, Doubles, and Triples). This method 

offers a more realistic representation of quantum systems 

and is particularly useful in studying the energetics and 

reaction pathways in photocatalysis [110]. 

 

While CC methods are computationally 

expensive, they hold great potential for improving the 

understanding of photocatalytic processes. The 

resolution of identity technique [111], has been proposed 

to enhance the scalability of CC methods. This method 

significantly enhances computational efficiency, 

enabling researchers to model larger systems without 

compromising the accuracy of their results. 

 

In photocatalysis, variational and perturbation 

methods are essential for accurately modeling complex 

quantum systems. Variational methods, such as those 

employed in density functional theory (DFT) and the 

Hartree–Fock method, provide a foundation for 

understanding electronic structure, excited states, and 

reaction pathways. However, to capture the complexities 

of electron correlation and multi-electronic phenomena, 

more advanced methods, such as CI, CASSCF, and CC, 

are necessary. While these methods are computationally 

intensive, they are crucial for advancing our 

understanding of photocatalytic processes and 

optimising catalyst design. Through ongoing research 

and the development of improved computational 

techniques, these methods continue to provide deeper 

insights into the mechanisms of photocatalysis. 
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➢ Perturbation Theory and Its Applications in 

Photocatalysis 

Perturbation theory (PT)-based techniques are 

highly valued for incorporating electronic correlation 

into low-level approximations and modeling the 

response of molecular systems to external perturbations, 

such as light radiation. However, even the simplest post-

Hartree-Fock method, Møller–Plesset Perturbation 

Theory (MP2), is not commonly used for medium-to-

large-sized systems due to its computational complexity. 

Despite this limitation, MP2 can still accurately predict 

fundamental properties, such as electronic structure, 

dipole moments, vibration frequencies, and 

polarizability, for specific molecular systems like C–

NO₂ clusters. These properties are crucial for 

understanding the optical response of molecules in 

excited states, including fluorescence decay and second-

harmonic generation, both of which are essential for 

investigating photoinduced processes and excited-state 

dynamics. 

 

To incorporate the effects of external fields, 

MP2 can be integrated with more precise methods, such 

as response theory and time-dependent density 

functional theory (TD-DFT) [112]. 

 

➢ Multiconfigurational Systems and CASPT2 

Many molecular systems exhibit 

multiconfigurational character, meaning their electronic 

structure cannot be described by a single Slater 

determinant. This is especially true for organic, 

inorganic, ligand-field, and conjugated systems, which 

exhibit rich photophysical behavior, including 

absorption spectra, excitation energies, potential energy 

surfaces, and photochemical processes such as 

photoisomerisation, photodissociation, and 

photoreduction. 

 

To capture the multiconfigurational nature of 

these systems, perturbation theory methods can be 

applied to the wave function obtained from the CASSCF 

method [113]. This approach, known as complete active 

space perturbation theory (CASPT2) [114], is one of the 

most successful methods for studying the spectroscopy 

of multiconfigurational systems. However, it does come 

with some theoretical challenges. 

 

➢ Perturbation Methods in Transition Metal 

Compounds 

Perturbation methods are also widely applied to 

study the electronic structure and magnetic properties of 

transition metal compounds, which exhibit phenomena 

such as spin-crossover, exchange coupling, and magnetic 

anisotropy. These phenomena depend on the balance 

between electron–electron interactions and crystal field 

effects, which can be tuned using perturbation theory 

methods. 

 

 

 

➢ Time-Dependent Computational Methods for 

Photocatalysis 

For studying the dynamic properties crucial to 

photocatalysis, such as charge carrier dynamics and 

recombination phenomena, sophisticated time-

dependent computational methodologies are required. 

One approach involves solving the time-dependent 

Schrödinger equation, which provides insights into the 

quantum mechanical behavior of electrons within a 

material under investigation. Alternatively, ab initio 

molecular dynamics (AIMD) [115], simulations can be 

used to trace the temporal evolution of atomic positions 

and velocities within a molecular framework, accounting 

for quantum mechanical effects on the electronic 

subsystem. These methods provide a comprehensive 

understanding of the photocatalytic process, enabling the 

incorporation of external variables, such as temperature 

variations, to optimise process parameters for improved 

efficiency. 

 

➢ Challenges in Time-Dependent Schrödinger 

Equation Solving 

Solving the exact time-dependent Schrödinger 

equation for systems with complex Hamiltonians, 

subject to time-dependent external perturbations, is a 

computationally demanding task. As a result, various 

methods have been developed to simplify the problem. 

One such approach is Floquet theory, which is 

particularly useful for systems with time-periodic 

Hamiltonians. Floquet theory enables the derivation of 

quasi-stationary states, which represent eigenstates of an 

effective, time-independent Hamiltonian known as the 

Floquet Hamiltonian. Using the Floquet–Magnus 

expansion or the rotating wave approximation, these 

states can be used to calculate optical properties, 

including polarizability and harmonic generation [116]. 

This method is also adaptable to different switching 

functions of external perturbations, making it versatile 

for analysing and modeling complex systems [117]. 

 

➢ Time-Dependent Density Functional Theory 

(TDDFT) 

Another widely used method is time-dependent 

density functional theory (TDDFT), a special case of 

response theory that characterises how a system responds 

to time-dependent external perturbations [118,119]. 

TDDFT can simulate the dynamics of electronic density 

and effective potential under arbitrary time-dependent 

external potentials. It can be implemented in various 

forms, such as linear response theory, nonlinear response 

theory, and real-time response theory. TDDFT is more 

general and versatile than perturbation theory as it can 

capture non-perturbative phenomena, such as strong-

field ionisation and high-harmonic generation, making it 

a powerful tool for studying photocatalytic systems. 

 

In summary, perturbation theory and its various 

applications, including MP2, CASPT2, and TDDFT, are 

crucial for understanding and modeling the complex 

dynamics involved in photocatalysis. These methods 
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help elucidate the electronic structure, magnetic 

properties, and photochemical behaviors of molecular 

systems under external perturbations such as light, 

temperature, and electric fields. As computational 

methods continue to evolve, the combination of 

perturbation theory with time-dependent approaches, 

such as TDDFT, will provide increasingly detailed 

insights into photocatalytic processes, aiding in the 

design and optimisation of photocatalysts for energy and 

environmental applications. 

 

4. Example: Fundamental Properties Using Density 

Functional Theory 

Density Functional Theory (DFT) remains the 

primary method for investigating the chemical properties 

of photocatalysts. The core of DFT lies in the concept of 

an energy functional that depends on the electron density 

of the system. The minimum of this functional provides 

the ground-state energy and electron density of the 

system [120]. By using electron density as the primary 

variable, DFT significantly simplifies the problem 

compared to wave functions, which require 3N 

coordinates, where N is the number of electrons. 

 

However, the exact form of the energy 

functional is unknown, and only approximate 

expressions are available. These approximations are 

based on assumptions about the energy functional’s 

dependence on electron density, and they may 

incorporate additional variables, such as kinetic energy 

density (τ), exchange potential (εx), and other non-local 

interactions. By introducing these variables, the 

functional becomes more adept at capturing the intricate 

interplay of electronic behaviors, though it also increases 

the computational challenges involved in the 

calculations. 

 

The general form of the energy functional in DFT is 

represented as: 

𝐸𝜌 = 𝐸(𝜌𝐿𝐷𝐴) ⋅ 𝛻𝜌 ⋅ [𝜀𝑥(𝜑𝑖)] … .. 

Where: 

• LDA: Local Density Approximation 

• GGA: Gradient-Corrected Approximation 

• Hybrid: Combines features of ab initio 

methods and DFT 

 

➢ Types of DFT Functionals 

There are several types of DFT functionals, each with its 

advantages and limitations: 

• Local Density Approximation (LDA): 

o    This function depends only on the local density 

ρ(r) at a given point in space. 

o    It is the simplest and computationally cheapest 

approximation, but it is often inaccurate for 

systems with strong electron–electron 

interactions or spatial variations in density. 

o    Examples of LDA functionals include VWN 

[121] and PWC [122]. 

 

 

• Gradient-Corrected Approximation (GGA): 

o    This functional depends on both the local 

density ρ(r) and its gradient ∇ρ(r), improving 

upon LDA by accounting for the non-

uniformity of the electron density. 

o    It enhances accuracy but still fails to capture 

some essential effects like dispersion or self-

interaction. 

o    Commonly used GGA functionals include 

PW91 [123], BLYP [124], and PBEsol [125]. 

 

• Hybrid Functionals: 

o    These functionals combine features of ab initio 

methods, such as Hartree–Fock, with features of 

DFT. They improve the accuracy of GGA by 

incorporating exact exchange and correlation 

effects 𝜀𝑥𝜌𝑖.  

o    However, they increase computational cost and 

complexity because a large number of two-

electron integrals need to be constructed from 

orbitals. 

o     Examples include B3LYP [126] and PBE0 

[127]. 

 

• Meta-GGA: 

o    This functional depends on the local density, its 

gradient, and the kinetic energy density τ(r), 

improving the accuracy of GGA by accounting 

for non-local effects of exchange and 

correlation. 

o    Meta-GGA functionals introduce new 

parameters and challenges for functional design 

but offer greater functionality. Some of these 

functionals, like SCAN [130], satisfy all 

constraints, making them attractive candidates 

for electronic structure calculations. 

o    Examples include M11-L [128] and revTPSS 

[129]. 

 

• Range-Separated Hybrid: 

o This functional separates the exchange and 

correlation into short-range and long-range 

components, applying different approximations 

for each. 

o It improves the accuracy of hybrid methods by 

reducing the self-interaction and delocalisation 

errors. However, it requires the choice of a 

range-separation parameter, which may depend 

on the system under study [132]. 

 

• Double Hybrid: 

o    This functional combines a hybrid functional 

with a perturbative correction based on methods 

like MP2. 

o    It improves the accuracy of hybrid methods by 

incorporating dynamic correlation effects, but it 

also increases the computational expense and 

sensitivity to the choice of the basis set [133]. 
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DFT remains a crucial method for investigating 

the fundamental properties of photocatalysts, enabling 

the understanding of their electronic structure, reactivity, 

and interactions. By utilising different types of 

functionals, ranging from simpler approximations, such 

as LDA, to more complex ones, like double hybrid 

functionals, DFT provides a flexible and robust 

framework for studying photocatalytic materials. Each 

functional offers a balance between computational cost 

and accuracy, making it essential for researchers to select 

the most appropriate functional depending on the system 

and properties they are investigating. 

 

The functionals are listed in order of increasing 

complexity and the non-locality of density dependence. 

In general, this leads to better accuracy, but not always. 

For example, LDA is more straightforward and faster 

than GGA, but GGA is more accurate and flexible for 

most systems. However, there are some cases where 

LDA performs better than GGA, such as the following: 

• Elastic Constants of Some Crystals: 

LDA tends to overbind atoms and predict stiffer 

bonds, which results in better agreement with 

experimental values of elastic constants for some 

materials, such as diamond or silicon. GGA, on the other 

hand, tends to underestimate elastic constants due to 

softer bonds and the use of gradient corrections. 

 

• Phase Transitions of Some Metals: 

The LDA is more accurate than the GGA for 

predicting the critical pressures of structural phase 

transitions in some group IV, V, and VI elements, such 

as C, Si, Ge, Sn, S, Se, and Te. This is because LDA is 

exact for a uniform gas and works better for simple 

metals. At the same time, GGA introduces errors due to 

gradient corrections and the over-delocalization of the 

electrons. 

 

These examples illustrate where LDA is more 

accurate than GGA; however, they are not general rules. 

In most cases, GGA is preferred over LDA for studying 

the electronic structure and properties of many-body 

systems. However, even GGA may not be sufficient for 

some systems that require more advanced functionals, 

such as hybrid, meta-GGA, range-separated hybrid, or 

double-hybrid. 

 

The photocatalytic properties and performance 

of catalysts depend strongly on the supporting surfaces 

on which they are situated. In some cases, the support 

surface can even act as a photocatalyst itself. These 

surfaces can be engineered to enhance chemical 

efficiency by creating defects and vacancies, as well as 

modifying their geometry. For instance, adjusting the 

HOMO–LUMO gap of a catalyst by altering the support 

surface can facilitate the charge separation process and 

improve the electron–hole transfer efficiency, thereby 

affecting the reaction rate [134, 135]. 

 

However, such systems are too large and 

complicated to be explicitly modeled by DFT at the 

molecular level. Therefore, a specific version of DFT 

combined with periodic boundary conditions (PBC DFT) 

is employed to simulate catalysts deposited on periodic 

systems, such as crystals, surfaces, and nanotubes [136]. 

It uses Bloch’s theorem, which states that the 

eigenfunction of an electron in a periodic potential is. 

𝜓𝑛𝑘(𝑟) can be written as the product of a plane wave 

ⅇ𝑖𝑘𝑟and a periodic function 𝑢𝑛𝑘(𝑟). Mathematically, the 

Bloch theorem can be expressed as follows: 

𝜓𝑛𝑘(𝑟) =  ⅇ𝑖𝑘𝑟𝑢𝑛𝑘(𝑟) 

 

Where n is the band index, and k is the wave 

vector [137]. PBC DFT solves the Schrödinger or, more 

precisely, Kohn–Sham equation for the Bloch wave 

function using a self-consistent approach that involves 

the electron density, the exchange-correlation energy, 

and the effective potential. PBC DFT can compute the 

energy band structure, the density of states, optical 

properties (reflectivity, absorption, refractive index, 

dielectric function, etc.), and other electronic properties 

of periodic materials. 

 

This method not only lowers the computational 

cost but also enables the investigation of the electronic 

structure and other essential properties of periodic 

systems, offering valuable insights into the 

photocatalytic behavior of materials, especially those 

supported on complex surfaces. In Figures 1 and 2, 

examples of calculated absorption curves and electronic 

properties (the band structure and density of states) of 

several common catalytic materials (CdS, CeO2, Fe2O3, 

Si, TiO2, WO3, ZrO2) are presented. These calculations 

were conducted using the HSE06 density functional 

theory (DFT) functional, as implemented in the CASTEP 

software package (version 24.1, Castep Developers 

Group, UK). 
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Figure 1: Absorption Coefficients for Typical Photocatalysts 

 

This figure presents the absorption coefficients 

of various photocatalysts, showcasing how their 

absorption characteristics vary across different 

wavelengths. The data highlights the significant role of 

these materials in photocatalytic processes, with varying 

efficiency based on their light absorption properties. The 

plot includes several typical photocatalysts, such as CdS, 

CeO₂, Fe₂O₃, TiO₂ (in different phases), WO₃, and 

ZrO₂. The absorption data are crucial for understanding 

their effectiveness in applications such as water splitting, 

CO₂ reduction, and other photocatalytic reactions. 

 

Due to periodic symmetry, using plane wave 

basis sets is more appropriate for PBC DFT [138]. This 

symmetry implies that the potential energy and the 

electron density are invariant under a discrete set of 

lattice translations, allowing us to define a primitive unit 

cell that can be repeated infinitely in all directions to 

form the crystal. The wavefunctions of the electrons in 

the crystal can then be written as Bloch functions, which 

are the product of a plane wave and a periodic function 

with the same periodicity as the crystal. This simplifies 

the computation of electronic properties, such as the 

band structure and the density of states, by reducing the 

problem to a finite number of k-points in the Brillouin 

zone. One can also reduce the computational cost by 

using pseudopotentials to replace the atomic cores and 

account for their effect on the valence electrons. 

 

Pseudopotentials are effective potentials that 

smooth out the oscillations of the wavefunctions near the 

nuclei and remove the core electrons from the 

simulation. This avoids the singularities of the Coulomb 

potential and reduces the number of plane waves 

required to represent the wavefunctions accurately. 

Pseudopotentials also reduce the size of the basis set 

needed for complete system convergence, significantly 

lowering the computational effort for periodic boundary 

condition (PBC) density functional theory (DFT) 

calculations. 

 

Unfortunately, in addition to the computational 

cost and the basis set dependence, there is an additional 

difficulty in using hybrid DFT functionals for periodic 

systems, associated with the treatment of long-range 

interactions. Hybrid functionals are designed to enhance 

the treatment of long-range electrostatic interactions. 

However, the non-local character of these contributions 

means that they can be computationally expensive and 

difficult to apply accurately in periodic systems [139]. 

Additionally, they often fail to describe dispersion 

forces, which are crucial for weakly bound systems, such 

as molecular crystals, van der Waals solids, and layered 

materials. 

 

To account for these effects, one may need to 

use empirical corrections or more sophisticated methods 

such as range-separated hybrids or self-interaction 

corrections. However, these approaches also introduce 

new parameters and approximations that may affect the 

accuracy and transferability of the results. Therefore, 

choosing the appropriate hybrid functional for periodic 

systems is not a trivial task and requires careful 
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validation and comparison with experimental data or 

higher-level methods. 

 

 
Figure 2: Band Structures and Density of States for Various Photocatalysts 

 

This figure illustrates the band structures and 

density of states (DOS) for four different photocatalytic 

materials: (a) CdS, (b) Cu₂O, (c) TiO₂ (rutile phase), and 

(d) WO₃. The band structures show the electronic energy 

levels, while the density of states provides insight into 

the distribution of these energy levels. This information 

is crucial for understanding the electronic properties of 

these materials and their potential effectiveness in 

photocatalytic applications such as solar energy 

conversion and environmental remediation. 

 

To model a semi-infinite slab using PBC DFT, 

one should employ a primitive unit cell of the bulk 

crystal and then cut it along a desired surface plane to 

create the slab. The thickness of the slab must be 

carefully chosen to avoid artificial interactions between 

the top and bottom surfaces. This is important because 

these interactions can skew the simulation's results, 

rendering them unrealistic. Additionally, a vacuum layer 

should be incorporated within the system to separate the 

slab from its periodic images in the direction normal to 
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the surface. The thickness of this vacuum layer should be 

sufficient to prevent spurious interactions between the 

slabs while minimising computational costs. 

 

A typical approach to modeling the 

photocatalytic process on a surface involves various 

strategies. These range from assuming that the surface 

atoms are arranged the same way as the bulk atoms, with 

surface energy proportional to the number of dangling 

bonds, to considering the rearrangement and relaxation 

of surface atomic positions due to the lower coordination 

number and higher reactivity of surface atoms. This is 

important because surface atoms are more reactive than 

bulk atoms, resulting in distinct behavior in catalysis. 

Furthermore, introducing various types of defects, such 

as vacancies, adatoms, steps, kinks, impurities, and the 

interaction between the surface and adsorbed molecules 

(e.g., water, oxygen, hydrogen, and hydroxyl groups), 

helps replicate a realistic photocatalytic environment. 

This often requires optimising multiple adsorption sites 

and configurations [140]. 

 

DFT is now widely applied to analyse the 

electronic structure of photocatalysts (see Section 3), 

including the localisation of critical orbitals, the 

redistribution of electronic density upon excitation, and 

the formation of electron-hole pairs during 

photocatalysis. Researchers utilise DFT for materials 

screening and design, making it an indispensable tool for 

advancing our understanding of photocatalysis and 

sustainable energy conversion. Numerous studies have 

reviewed the importance of DFT calculations in this 

field. For instance, Butera [141], provides practical 

guidance on using DFT in both homogeneous and 

heterogeneous catalysis, covering atomic-centered basis 

sets, plane waves, and the evaluation of energy barriers. 

The study discusses transition state theory (TST) and the 

energetic span model (ESM) in the context of 

understanding chemical reaction kinetics in catalysis. 

TST explains how chemical reactions occur and their rate 

determination, while ESM focuses on energy differences 

between intermediates and transition states, defining the 

turnover frequency (TOF) of catalytic events. 

 

Another study [142], investigates the 

multifunctional properties of XO₂ monolayers (where X 

= Ti, Ni, Ge) using DFT. The research explores the 

structural, electronic, optical, and photocatalytic 

properties of these materials, emphasising the influence 

of strain and stacking on their characteristics. This offers 

valuable insights into the materials' potential 

applications across various fields. Additionally, the 

study by Wenzhi Yao [143], examines the g-

C₃N₄/BiOBr (001) heterostructure via DFT, exploring 

its geometric and electronic structures and their influence 

on photocatalytic activity. The study reveals that the 

heterojunction functions as a type-II heterojunction, 

which facilitates effective electron-hole separation at the 

interface. It also shows that applying an external electric 

field can tune the electronic structure and enhance optical 

absorption in the visible region, potentially improving 

photocatalytic performance. 

 

However, conventional descriptors such as 

HOMO-LUMO, (p)DOS, and band structure may not 

fully capture the electronic structure of photocatalysts, 

especially in systems with strong electron correlation or 

when studying excited states [1-144]. More advanced 

techniques are often required to address these limitations 

and accurately examine the electronic properties of 

photocatalysts. 

 

For systems with strong electron correlation, 

such as transition metal complexes and rare-earth 

compounds, single-determinant approximations like 

DFT may fail [145], and the energy gap between frontier 

orbitals may not be sufficient for an accurate analysis. In 

these cases, multi-reference methods are necessary, 

where the focus shifts to the wave function, and natural 

orbitals can be derived post-processing. For excited 

states and electronic density redistribution, Dyson and 

Brueckner orbitals offer valuable insights [146]. Dyson 

orbitals describe the excited states of molecules, while 

Brueckner orbitals correct for electron-electron repulsion 

in ground-state calculations. 

 

To explore nonlinear optical properties and 

their relevance to photocatalysis [148], studies on the 

absorption of two photons, a critical nonlinear 

phenomenon, have been conducted. These insights are 

crucial for understanding light absorption and charge 

transfer processes in photocatalysis. Nonlinear optical 

activity in organic and inorganic materials is widely 

studied for enhancing photocatalytic properties, 

particularly in applications such as water splitting and 

CO₂ reduction. 

 

Finally, the Fukui function can be used to 

analyse the reactivity of molecules, identifying potential 

sites where electrons are likely to be accepted or donated 

during chemical reactions [151]. This tool is essential for 

predicting interactions between photocatalysts and 

reactants in photocatalysis. For even greater accuracy, 

the dual descriptor can be employed, as it offers more 

reliable identification of nucleophilic and electrophilic 

regions than the Fukui function, making it a more 

trustworthy measure of local reactivity [153,154]. 

 

To gain deeper insights into chemical bonding, 

the Crystal Orbital Overlap Population (COOP) is a 

powerful tool in quantum chemistry [155]. In the context 

of photocatalysis, the orbital overlap population 

measures the electron density shared between 

overlapping orbitals, indicating the strength of bonding 

interactions between atoms. Two primary methods used 

in this analysis are the COOP [156], and Crystal Orbital 

Hamilton Population (COHP) [157], which focus on 

different aspects of bonding. 

• COOP divides the electron density between 

atoms, indicating whether interactions are 
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bonding or antibonding. By integrating the 

COOP curve, one can obtain the electron count, 

similar to the Mulliken population analysis. 

This gives insight into how the electron density 

is distributed in the system. 

• COHP, on the other hand, dissects the band 

structure energy into bonding and antibonding 

contributions. By integrating the COHP curve, 

one can obtain an energy value that reflects the 

strength of the bond, showing how stable the 

bond is in terms of energy. 

 

While COOP provides information on the 

distribution of electrons between atoms, COHP reveals 

the energetic implications of bonding. Both analyses are 

valuable in studying photocatalysis as they offer insights 

into the electronic structure and stability of catalysts 

involved in light-induced chemical reactions. 

Understanding these interactions is essential for 

optimising the design and efficiency of photocatalytic 

materials. 

 

In practical photocatalytic studies, analysing the 

orbital overlap population can provide critical 

information on the electronic structure of catalysts and 

the interactions between catalysts and reactants [158]. 

This understanding is crucial for modeling the processes 

involved in photocatalysis, such as light absorption, 

charge separation, and transfer, as well as the reactivity 

of the catalyst. By analysing orbital overlap populations, 

researchers can predict and optimise the efficiency of 

photocatalytic reactions, ultimately leading to the 

development of more effective photocatalysts for 

applications such as water splitting and CO₂ reduction. 

 

Figure 3 illustrates an example of such an 

analysis for carbon and copper atoms when a carbon 

dioxide molecule is bonded to the (111) surface of a 

copper oxide. The partial density of states (pDOS) would 

show the contribution of these atoms to the electronic 

states of the system. In a bonded system, shifts in the 

pDOS are expected due to the interaction between CO₂ 

and the Cu₂O surface, indicating charge transfer and 

bonding characteristics. In this example, the analysis 

suggests that CO₂ binds as a tilted linear molecule 

coordinated to an unsaturated surface cation, and the 

presence of surface vacancies can influence the 

adsorption and activation of the CO₂ molecule. These 

interactions would be reflected in both the COOP and 

COHP analyses, as well as in the partial DOS for the 

carbon and copper atoms. 

 

In photocatalysis, precise energies and accurate 

electronic density redistributions are crucial, and 

sometimes these can exceed the capabilities of even the 

most advanced DFT methods. In such cases, 

multireference methods and many-body perturbation 

theory [159, 160], can significantly enhance the quality 

of modeling photocatalytic reactions. These methods are 

beneficial for capturing the complex electronic 

interactions in photocatalytic systems, especially when 

dealing with excited states or systems where electron 

correlation is non-negligible. By incorporating 

multireference approaches, researchers can achieve a 

more nuanced understanding of photocatalytic 

processes, potentially leading to breakthroughs in the 

efficiency and effectiveness of photocatalysts. 

 

 
Figure 3: Crystal Orbital Overlap and Hamilton Populations for Carbon and Copper Atoms in CO₂ Molecule 

Bonded to a Cu₂O(111) Surface. 
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This figure presents the crystal orbital overlap 

population (COOP) and crystal orbital Hamilton 

population (COHP) for the carbon and copper atoms in a 

CO₂ molecule that is bonded to the Cu₂O(111) surface. 

Additionally, the partial density of states (DOS) is 

included for both the bonded and non-bonded systems, 

showing the contribution of these atoms to the electronic 

states of the system. The analysis highlights the charge 

transfer and bonding characteristics between the CO₂ 

molecule and the Cu₂O surface. 

 

5. Software 

The landscape of quantum chemistry software 

packages is diverse, offering both commercial and free 

options to cater to various molecular and periodic 

boundary condition applications, as well as density 

functional theory (DFT) and wave function-based 

methods. Different software packages offer distinct 

advantages and disadvantages depending on the research 

objectives, methodology, parallelisation, and 

accessibility. This section introduces some of the most 

widely used quantum chemistry software packages, 

highlighting their key features and capabilities. 

 

For molecular quantum chemistry, Gaussian 16 

is one of the most comprehensive software packages. It 

supports a range of molecular methods, including 

Hartree-Fock (HF) and density functional theory (DFT), 

as well as multiconfigurational models such as complete 

active space self-consistent field (CASSCF) and 

multireference configuration interaction (MRCI). It 

includes an extensive library of density functionals and 

various basis sets, such as Gaussian-type orbitals (GTOs) 

and effective core potentials (ECPs) [161]. Gaussian 16 

can calculate excited states, transition states, and reaction 

paths, and its parallelisation capabilities are optimised 

for SMP workstations and single-node clusters. 

However, it requires the additional Linda parallel library 

for multiple cluster nodes. 

 

Another widely used commercial software for 

molecular quantum chemistry is Amsterdam Density 

Functional (ADF), which specialises in density 

functional theory (DFT) calculations for molecular 

systems. ADF supports various DFT methods, including 

generalised gradient approximations (GGAs), hybrid 

functionals, meta-GGAs, and range-separated 

functionals. It can account for relativistic and spin-orbit 

coupling effects and calculate excited states, transition 

states, and reaction paths using methods such as TDDFT, 

constrained DFT, and transition state search [162]. ADF 

is particularly well-suited for large and complex systems, 

such as transition metal complexes and biomolecules. 

 

For a free-for-academia option, Orca is a 

versatile software that excels in coupled cluster, multi-

reference, semi-empirical, and DFT methods. Orca can 

perform various coupled cluster methods, such as CCSD 

and CCSD(T), as well as multi-reference methods like 

CASSCF and MRCI with DMRG. It also supports a 

variety of DFT functionals and can calculate excited 

states and transition states using techniques such as CIS, 

TDDFT, and IRC [163, 164]. Orca is highly scalable and 

optimised for complex quantum chemistry simulations. 

 

For periodic boundary condition (PBC) 

quantum chemistry, Vienna Ab initio Simulation 

Package (VASP) is a leading commercial software. 

VASP supports PBC DFT and various many-body 

perturbation theory methods, including the GW 

approximation, the Bethe-Salpeter equation (BSE), and 

the random phase approximation (RPA). It offers 

flexibility in choosing functionals and basis sets, 

including plane waves, projector augmented wave 

(PAW) methods, and ultrasoft pseudopotentials (USPPs) 

[165]. VASP is renowned for its ability to handle large-

scale calculations and offers excellent flexibility in 

selecting functional and basis sets. 

 

Another open-source alternative for PBC DFT 

is Quantum Espresso, which is highly valued for its 

open-source nature, allowing rapid adaptation and 

innovation. It supports a range of DFT functionals and 

many-body perturbation theory methods, including the 

GW approximation, BSE, and RPA. Quantum Espresso 

is capable of calculating band structures, density of 

states, optical properties, and surface reactions using 

methods such as k-point sampling. It can handle large 

systems, including nanomaterials and biomolecules 

[166]. 

 

CASTEP is a powerful tool for computational 

materials science, available as part of the Material Studio 

suite for commercial use or free for academic use. 

CASTEP supports a range of PBC functionals, including 

LDA, GGA, hybrid, and meta-GGA, and offers a highly 

efficient plane-wave basis set. It includes a built-in 

pseudopotential generator, enabling users to create 

custom pseudopotentials for any element. Although 

CASTEP does not support many-body perturbation 

methods like GW and BSE, it offers a range of 

spectroscopic features, including IR, Raman, and NMR 

spectra, which are directly related to experimental data 

[167, 168]. 

 

The landscape of quantum chemistry software 

is vast, offering both commercial and free software 

options tailored to various molecular and periodic 

boundary condition applications, as well as density 

functional theory (DFT) and wave function-based 

methods. Depending on the research goals, different 

software packages offer unique advantages in terms of 

methodology, parallelisation, and accessibility. Below is 

an overview of some popular quantum chemistry 

software packages. 

 

DMol3 (version 2024, BIOVIA Inc., San 

Diego, CA, USA) [169], is a versatile software package 

for DFT calculations across various systems, including 

molecules, clusters, surfaces, and solids. It employs a 
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numerical radial function basis set, which is space-saving 

and efficient compared to the plane-wave basis set used 

in programs like CASTEP. DMol3 also supports the 

conductor-like screening model (COSMO) for 

simulating solvation effects and offers enhanced 

parallelisation using MPI/OpenMP for large systems. 

Additionally, it calculates electron transport properties 

using non-equilibrium Green's function theory. 

 

OpenMX (version 2023, Northwestern 

University, Illinois) [170], utilises a linear combination 

of pseudoatomic orbitals (LCPAO) basis set, offering 

greater flexibility and transferability compared to 

traditional basis sets. It supports advanced features such 

as spin–orbit coupling, non-collinear magnetism, and 

spin-polarised DFT+U. OpenMX is well-parallelized 

using both OpenMP and MPI, resulting in high 

efficiency. As an open-source software, it can be 

configured with various compilers and numerical 

libraries. 

 

OpenMolcas (version 23, Lund University, 

Sweden) [171], specialises in multiconfigurational 

methods, making it ideal for accurately describing 

complex electron correlation. It includes core methods 

such as CASSCF and CASPT2, which aid in predicting 

spectral properties and studying the electronic and 

optical behavior of molecules. OpenMolcas is open-

source, allowing for community-driven development and 

the integration of new features. 

 

DFTB+ (version 24) [172], is the most widely 

used implementation of the DFTB approach, available as 

a standalone program or integrated into other software 

packages. It employs a minimal basis set of valence 

orbitals and a parametrised Hamiltonian derived from the 

Slater–Koster model. DFTB+ supports various methods 

for spin effects, time-dependent DFTB, excited states, 

and transport calculations. It also provides advanced 

features, such as LDA+U, spin–orbit coupling, and 

pseudo-self-interaction correction. DFTB+ offers a 

range of techniques for calculating electronic properties, 

including band structures and optical spectra, and is 

highly efficient with MPI, OpenMP, and GPU support. 

 

6. CONCLUSIONS AND PERSPECTIVES 
Computational modeling in photocatalysis has 

become a crucial and powerful tool in various fields, 

particularly in energy and materials science. Over the 

past few decades, advancements in computational and 

quantum chemistry have allowed for a more detailed 

understanding of photocatalytic processes. However, to 

stay aligned with the rapid progress in experimental 

techniques and meet industrial demands, modeling must 

continuously evolve. This can be achieved through 

several factors. 

 

 

 

 

➢ Key Factors for Progress 

• Quantum Chemical Algorithms Development 

Advancements in quantum chemical algorithms 

are essential for improving the accuracy and efficiency 

of simulations. The continuous evolution of algorithms 

enables researchers to handle increasingly complex 

systems and refine predictions in fields such as 

photocatalysis. However, improving algorithms alone 

may not be sufficient if hardware and computational 

techniques don't keep pace. 

 

• Development of Numerical Algorithms 

The development of numerical algorithms aims 

to enhance the efficiency of quantum chemical 

calculations by optimising computational methods and 

addressing challenges such as scaling and convergence 

issues. Nonetheless, while linearisation techniques (such 

as clustering) offer improvements, they may not be 

enough to handle the increasing complexity of real-world 

systems. 

 

• Exploitation of Molecular System Structures 

Using the structure of molecular systems is 

another crucial factor for improving simulations. By 

incorporating features like clustering and the intrinsic 

symmetry of systems, computational models can be 

optimised. However, achieving the speed required for 

large systems remains a significant challenge, and the 

efficiency gained by these methods is still limited. 

 

• Parallelization and Computational Hardware 

The advances in parallel computing have 

significantly accelerated computational chemistry. 

However, the increased number of processing units often 

leads to increased overhead, as described by Amdahl’s 

law. Despite the exponential growth in computational 

power, primarily driven by Moore’s Law, the scaling of 

methods and the need for high-speed computations in 

large systems remain significant hurdles to overcome. 

 

• New Paradigms in Computational Modeling 

New approaches, such as multiscale modeling, 

offer the potential to overcome limitations associated 

with single-scale models. Multiscale models combine 

different levels of detail, or “sub-models,” to simulate 

systems more accurately and efficiently. This approach 

is widely used in material science, fluid dynamics, and 

other engineering disciplines. However, the lack of a 

general theory for multiscale modeling has limited its 

widespread application in photocatalysis. 

 

➢ Challenges and Future Directions 

The combination of quantum chemical 

algorithms, numerical techniques, molecular system 

structures, and parallelisation offers the best prospects 

for addressing the increasing demands in photocatalysis 

research. However, while multiscale modeling provides 

great potential, its development has been slow due to a 

lack of general theory and a universally accepted 

framework. The interdisciplinary nature of multiscale 
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modeling has led to inconsistent terminology and 

frameworks, complicating collaboration between 

researchers from different fields. For example, in 

physics, "scale" refers to the length, time, or energy 

scales of a system. In contrast, in biology, it refers to the 

level of organisation of an organism, such as molecular, 

cellular, or higher levels. 

 

A significant challenge in multiscale modeling 

is establishing methods for validation and verification. 

Validation ensures that a model aligns with empirical 

data, while verification verifies that the model is 

implemented correctly. Both processes are critical for 

ensuring the reliability of multiscale models, but they are 

complex due to the many sources of uncertainty, such as 

model assumptions, parameter estimation, and data 

quality, that must be considered. 

 

➢ New Paradigms: Machine Learning and 

Quantum Computing 

In addition to algorithmic and hardware 

advancements, new paradigms such as machine learning 

(ML) and quantum computing (QC) hold immense 

promise for the future of quantum chemistry. ML and AI 

can greatly enhance quantum chemistry by improving 

data analysis, model development, and predictions. 

Specifically, ML can help design new molecules, 

optimize reaction conditions, and discover new chemical 

phenomena. In quantum chemistry, machine learning 

(ML) can enhance the accuracy and efficiency of 

quantum methods, including density functional theory 

(DFT), configuration interaction (CI), quantum Monte 

Carlo (QMC), and multiconfigurational approaches such 

as complete active space self-consistent field (CASSCF) 

and multireference configuration interaction (MRCI). 

For example, ML can help design new exchange-

correlation functionals for DFT, reducing computational 

costs while maintaining accuracy. It can also help refine 

the convergence of quantum methods and guide the 

search for optimal solutions. 

 

The second application of ML involves 

bypassing traditional quantum methods to directly 

predict properties and behaviors of molecules and 

materials based on existing data. Machine learning (ML) 

can construct interatomic potentials, enabling efficient 

molecular dynamics simulations. It can predict 

molecular properties such as energies, forces, dipole 

moments, polarizabilities, and spectra from descriptors 

like atomic coordinates and chemical compositions. 

Furthermore, ML can analyse large data sets from 

experiments or simulations to discover new chemical 

phenomena, reaction pathways, and catalytic 

mechanisms. 

 

➢ Quantum Computing: A New Frontier 

On the other hand, quantum computing (QC) 

presents a new frontier for simulating quantum systems. 

QC can revolutionise quantum chemistry by providing 

robust solutions to simulate molecular properties, 

explore potential energy surfaces, and perform quantum 

dynamics. Although QC has enormous potential, it faces 

challenges such as data quality, algorithm development, 

and hardware limitations. 

 

Computational modeling in photocatalysis 

holds great potential for advancing the field, but 

significant challenges remain. The combination of 

improving quantum chemical algorithms, developing 

new numerical techniques, exploiting molecular system 

structures, enhancing parallelisation, and embracing 

emerging paradigms such as machine learning and 

quantum computing offers the best prospects for 

overcoming these challenges. Multiscale modeling, 

although still in its infancy, represents the most 

promising direction for addressing the complex demands 

of photocatalysis research, but it requires further 

development in theory and methodology to achieve its 

full potential. 

 

A promising application of machine learning 

(ML) in photocatalysis is the use of chemical descriptors 

derived from quantum chemistry calculations to 

characterise the catalytic activity of materials. ML 

frameworks have demonstrated exceptional capabilities 

in predicting material properties by establishing a 

nonlinear relationship between input and output data 

corresponding to catalytic properties. Unlike traditional 

computational methods, which require computationally 

expensive quantum chemical calculations, ML methods 

can provide fast and cost-efficient predictions of 

catalytic properties. The success of these ML models 

depends heavily on designing descriptors that uniquely 

represent materials, are computationally inexpensive to 

calculate, and accurately reflect the nature of the targeted 

properties. 

 

Researchers have developed various descriptors 

to capture the key characteristics of materials, including 

local geometric features, individual atomic properties at 

potential active sites, and generalised coordination 

descriptors (e.g., valence, free bonds, and ionic radius). 

However, modeling catalytic reactions remains a 

challenging task, as it involves following complex 

reaction pathways. Although atomic fingerprints can 

effectively predict bulk properties (e.g., 

thermodynamics, viscosity, boiling point, fracture 

toughness), they are not well-suited for predicting 

catalytic reaction paths. Thus, ongoing research to 

develop new catalytic descriptors and their integration 

with ML techniques is vital for advancing this field. 

 

➢ Challenges of Applying ML in Computational 

Chemistry 

One of the significant challenges in applying 

ML in computational chemistry is its lack of 

interpretability. ML models are often regarded as "black 

boxes", meaning that their internal workings and 

reasoning processes are not transparent to users. This 

presents a significant challenge in computational 
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chemistry, where the goal is not only to predict outcomes 

but also to understand the underlying mechanisms that 

govern chemical phenomena. For instance, while ML 

models can predict reaction rates, selectivity, and 

reaction pathways for catalytic reactions, they fail to 

explain why specific catalysts are more effective or 

selective than others. Understanding these underlying 

factors is essential for the rational design and 

optimisation of catalysts and reactions. 

 

➢ Quantum Computing: The Future of 

Photocatalysis Modeling 

Another promising solution for advancing 

photocatalysis modeling is quantum computing (QC) 

[173]. Initially proposed by Richard Feynman to solve 

complex Schrödinger equations for large systems, 

quantum computing now holds immense potential to 

improve various scientific fields, including machine 

learning, artificial intelligence, and cryptography. 

Recent progress in quantum computing has led to the 

development of new quantum algorithms, which have 

already shown remarkable success in predicting 

molecular electronic structures. Examples include the 

qubit coupled cluster method [174], the multireference 

quantum Krylov algorithm for strongly correlated 

electrons [175], and the quantum imaginary time 

evolution algorithm [176]. These innovations have 

opened the door for simulating chemical dynamics 

[177,178] with impressive accuracy and computational 

speed. 

 

Quantum computing has also demonstrated 

practical applicability in fields such as determining the 

excited state energies of small molecules [179], 

simulating molecular electronics [180], and tracking 

Diels–Alder reaction pathways [181]. Notably, 

researchers have successfully utilized quantum 

computers to design novel catalysts for CO₂ reduction, a 

crucial process in combating climate change and 

producing renewable fuels. 

 

➢ Challenges Facing Quantum Computing 

Despite its potential, quantum computing faces 

substantial challenges related to scalability, noise, error 

correction, and the development of new algorithms. 

Current quantum computing hardware is limited by the 

number of qubits, which restricts the complexity and size 

of molecular systems that can be simulated. Furthermore, 

high noise and error rates are standard, which impact the 

accuracy and reliability of quantum computations. 

Efficient error-correction schemes are essential, but 

these require additional qubits and computational 

resources. Despite these hurdles, the demand for robust 

quantum computing methods presents opportunities to 

harness quantum advantages, spurring interdisciplinary 

collaboration and innovations in photocatalysis and 

chemistry. 

 

➢ Future Prospects 

The future of quantum computing in 

computational chemistry holds immense potential, 

particularly for overcoming the limitations of classical 

computers. As quantum computing continues to evolve, 

it promises to transform the modeling of photocatalytic 

reactions and accelerate the discovery of novel 

photocatalysts. The continued development of quantum 

algorithms and machine learning methods will be pivotal 

in addressing challenges and optimising photocatalysis 

for real-world applications. 

 

This review highlights the significant strides in 

computational modeling techniques for photocatalysis, 

with a focus on molecular and periodic boundary 

condition (PBC) density functional theory (DFT) 

approaches. These methods have shown considerable 

success in various photocatalytic systems, including 

metal oxides, metal chalcogenides, carbon-based 

materials, metal halide perovskites, and metal–organic 

frameworks. We have also reviewed and compared the 

most widely used computational chemistry software, 

providing practical tips for researchers to select the 

appropriate tools for their specific research needs. 

Furthermore, the review explores the challenges and 

perspectives for future developments in quantum 

chemistry methods, emphasising the potential of 

machine learning and quantum computing to 

revolutionise the modeling of photocatalytic reactions. 

 

Table 1: Comparative Analysis of Methods Regarding Photocatalytic Systems 

Method Description Strengths Limitations Extensions Applications 

in 

Photocatalysis 

Density Functional 

Theory (DFT) 

Minimises a 

functional of 

electronic 

density, for 

which only 

approximate 

expressions are 

available. 

Widely used for 

its efficiency 

and a good 

balance between 

accuracy and 

computational 

cost. 

May struggle 

with systems that 

have strong 

correlation 

effects or require 

accurate 

descriptions of 

excited states. 

New functionals 

(SCAN, Double 

hybrid, range-

separated, etc.), 

CASDFT, 

density fitting 

Geometry 

optimisation, 

orbital 

energies, 

transition states 

(TS), reaction 

barriers, DOS, 

band structure 

Multiconfigurational 

and Multireference 

Methods (MRCI, 

Consider multi-

configurational 

states for a 

Provide a better 

treatment of 

systems with 

Computationally 

intensive and 

may not be 

Combination 

with DFT 

(CASDFT), 

Excitations, 

spectroscopy, 

and accurate 
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CASSCF, RASSCF, 

etc.) 

more accurate 

description of 

systems with 

significant 

electron 

correlation. 

near-degeneracy 

and strong static 

correlation. 

suitable for 

extensive 

systems. 

AI/ML, DMRG, 

resolution of 

identity 

electronic 

density 

distributions 

Perturbation Theory 

(MP2, MBPT) 

Account for 

electron 

correlation 

beyond the 

mean-field 

approximation 

by using 

perturbative 

corrections. 

Can accurately 

describe 

quasiparticle 

excitations and 

excited states. 

Requires high 

computational 

resources and 

expertise to 

apply correctly. 

New GW and 

Green function 

approximations, 

in combination 

with CAS 

(CASPT2) 

Excitations, 

accurate 

adsorption 

energies, 

quasiparticle 

and exciton 

binding 

modeling 

Semiempirical 

Methods (MNDO, 

AM3, PM6, PM7, 

DFTB, etc.) 

Utilise 

empirical 

parameters 

obtained from 

experimental 

data or high-

level 

calculations to 

account for 

electron 

correlation 

effects. 

Less 

computationally 

demanding, 

suitable for 

large systems 

and long time-

scale 

simulations. 

Less accurate 

than ab initio 

methods; may 

not capture all 

relevant physical 

interactions; 

requires 

parametrisation. 

New 

Hamiltonians, 

combinations 

with more 

accurate 

methods in 

QM/MM, 

ONIOM, etc. 

Preliminary 

geometry 

optimisation, 

modeling large 

systems, and 

properties 
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