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Abstract: The Breis-Lieb Lemma was first came up with by the famous French mathematician Haim Brezis and
American mathematician Elliott Lieb, it is an improvement of Fatou's Lemma, which has numerous applications mainly
in calculus of variations when it faced the problem whether an infimum or supremum can be achieved. In this paper we
use the Clarkson's inequality combined with the Fatou's Lemma to prove the Brezis-Lieb lemma.
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INTRODUCTION
Brezis-Lieb Lemma

Brezis-Lieb Lemma was first came up with by Haim Brezis and Elliott Lieb [1], they give the L" case and the
general case, which are the improvements of Fatou's Lemma.

Theorem 1.1. (the L” case) Let (Q, Z, ,u) be a measure space and let { fn }::1 be a sequence of complex valued

measurable functions, suppose || fn”p <C <+o0o forall n and forsome 0 < p<oo,and f, — f ae. then

tim {1517 =1, ~ f;} =0 ¢, @

nN—o0
More generally,
Theorem 1.2. (the general case) Let j:C — C be a continuous function, where C is complex domain, with
J (0) =0, for every sufficiently small & > 0, there exist two continuous, nonnegative function ¢_and y such that
li(a+b)-j(a)|<ep,(a)+y,(b) 2)
forall a,beC.

Let f, = f 4+ g, beasequence of measurable functions from € toC such that:
(i) g9,—0ae

i) j(f)el

(ii
(iii) J¢g(gn(x))dﬂ(X)SC <+, for some constant C, independent of ¢ and n.
(

iii) [y, (f(x))du<+e, forall £>0.

then,as N — o0,

[li(f+9.)-i(g,)-i(f)du—0. (3)

Preliminary knowledge

In order to give a complete proof of an important corollary of Brezis-Lieb lemma, we should know some
preliminary knowledge used in this paper.

Forl< p <+, L” is reflexive, separable, and the dual of L? is L” ,where
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£+i:1 (4)

p p

Lemma 1.3 (Clarkson's inequality[2])
(Clarkson's first inequality) Let 2 < p <oo , we claim that

fagll” =9 _ L6 oy
AN p£5(||f||p+||g||p), vi,gel. (5)
(Clarkson's second inequality) Let 1< p <2 ,we claim that
p’ _ p’ 1(p-1)
=K = E G R D ®
2 0, I 2 |, (2" T 2"

Lemma 1.4 (Fatou's lemma[2])
Let f_beasequence of functionsin L', which satisfies

(i) foralln, f >0 ae.
(ii) sup, [ f, <+.
For almost all X €, we set f(x):liminf f (X)£+oo .Then f e L* and

n—oo "N

[ f <liminf [ f, (7)

n—oo

USING CLARKSON’S INEQUALITY TO PROVE ONE IMPORTANT COROLLARY OF BREZIS-LIEB
LEMMA

In Brezis-Lieb Lemma, we replace the condition { fn} being a bounded sequence in L" by|| fn”p — || f ||p ,

then we can give a direct proof by using Clarkson's inequalities:

Proposition 2.1. ([2]) Letl< p<+w, f eL(Q),suchthat
(i) f.(x)> f(x) ae.
(i) [ £l =111,

Then we have

|f,— ] >0 (®)
P
Proof. (1)When 2 < p <400, by Clarkson's first inequality, then we have
f+f]° |f-f]° 1
: = <SG+ (©)
2 |, 2 f, 2\ T
By moving the first term in the left hand side to the right hand side, we have
f—f]° 1 fo+f]°
<SRl +1E) - (10)
2, "2\t T h 2
By taking the upper limit on both sides of the above inequality, then
—f. - f S A
lim || <||f|; —tim = (11)
n—o b p N b

In the other hand, by Fatou's Lemma,
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. f, +|°
lim lim 12
an'[ ‘ J‘n—)oo ( )
p
Since f,—=—f, f”; LY > f, thus —>|f|p a.e. then
[itim f”‘ (1P =) 1
nN—o0
- _ p
Returning to (10) , we have!im <0, applying squeeze rule,
—0
p
f N P
lim|-=" :O,i.e.|| f - f|| -0 (14)
n—w o p

(2When 1< p <2, by Clarkson's second inequality, then we have
foofl” il i o\
e I e I LSS s
P
By moving the first term in the left hand side to the right hand side,

+

f—f|” Vg f
Sl p E||fn||p+§||f||pj ! (19
P P
By taking the upper limit on both sides of the above inequality, then we have
— o/p f+ff°
lim <(Iff2)" ~ tim |- (17)
n—oo 0

By Fatou’s Lemma, we have
P

1&—“:(1 1)1

Since f,—*—f, > f, thus

jli

f,+

o
P
—‘ J (18)

‘ —>|f| a.e., thus we have

f+f

.|.|f| —||f|| (19)

Returning to (17) we have
f,—f
<0 (20)
2 P
It follows from squeeze rule that

|f,— ] >0 (21)
n p

lim

nN—oo
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