
Citation: Jeshwanth Ravi. AI-Driven Maui Framework App Development and SDK Test Validation for Fintech Clients.

Sch J Eng Tech, 2025 Jun 13(6): 357-376.

357

Scholars Journal of Engineering and Technology

Abbreviated Key Title: Sch J Eng Tech

ISSN 2347-9523 (Print) | ISSN 2321-435X (Online)

Journal homepage: https://saspublishers.com

AI-Driven Maui Framework App Development and SDK Test Validation

for Fintech Clients
Jeshwanth Ravi1*

1Software Test Engineer – Sr. Consultant, Visa Inc, Austin Texas, US

DOI: https://doi.org/10.36347/sjet.2025.v13i06.001 | Received: 31.04.2025 | Accepted: 04.06.2025 | Published: 11.06.2025

*Corresponding author: Jeshwanth Ravi

Software Test Engineer – Sr. Consultant, Visa Inc, Austin Texas, US

Abstract Review Article

This research investigates the efficacy and challenges of employing generative Artificial Intelligence (AI) models—

specifically Anthropic Claude, OpenAI GPT, and Google Gemini, orchestrated via the Cline extension in Visual Studio

Code—to construct a .NET MAUI test application for validating FinTech Software Development Kits (SDKs). The

study focuses on automating the generation of XAML for user interfaces and C# for backend logic, targeting critical

FinTech workflows such as wallet provisioning on Android and iOS platforms. The methodology involved an iterative

AI-assisted development process, encompassing AI-driven planning, code generation, extensive human-led refinement,

and rigorous testing using a mock SDK and Appium for UI automation. Hypothesized results suggested significant

acceleration in initial boilerplate code generation, though a substantial portion (40-60% for XAML, 30-50% for C#)

required manual rework to address framework-specific nuances, ensure code quality, and implement robust error

handling. Key challenges identified include the AI's inconsistent understanding of .NET MAUI's XAML dialect,

limitations in managing complex UI state, occasional AI hallucinations, and the need for highly specific, context-rich

prompts. Despite these hurdles, the final human-refined test application successfully automated the validation of the

designated FinTech workflow across both platforms. The findings indicate that while AI serves as a powerful accelerator

in test application development, expert human oversight remains indispensable for ensuring the quality, security, and

framework compliance of the generated code. The study concludes that AI dramatically reshapes the role of the test

automation engineer towards that of an AI orchestrator and critical validator, and outlines future research directions

including the development of fine-tuned AI models for specific frameworks like .NET MAUI and AI-driven test data

generation for complex FinTech scenarios.

Keywords: NET MAUI, FinTech SDK, Test Automation, AI Code Generation, Anthropic Claude, OpenAI, Google

Gemini, Cline, Wallet Provisioning, Mobile Application Testing.
Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original
author and source are credited.

INTRODUCTION
The domain of cross-platform mobile

application development has witnessed a significant

transformation with the advent of frameworks aiming to

unify codebase management while delivering native

performance and user experiences. NET Multi-platform

App UI (MAUI) represents Microsoft's latest

advancement in this arena, evolving from Xamarin.

Forms to offer a more streamlined development

paradigm. [1]. NET MAUI facilitates the creation of

applications for Android, iOS, macOS, and Windows

from a single C# codebase. Its architecture is engineered

to provide a unified project structure, which simplifies

dependency management and platform-specific code

organization compared to its predecessors [1].

Furthermore, NET MAUI introduces an enhanced UI

consistency mechanism through the use of "handlers,"

which provide a more flexible and performant way to

map cross-platform UI controls to native platform

controls, and it promises improved overall application

performance [1]. These characteristics position.NET

MAUI as a compelling choice for developing FinTech

applications, which often demand robust native

capabilities, a consistent user experience across multiple

platforms, and the ability to handle potentially high-load

enterprise scenarios. The integration with the broader.

NET ecosystem and the availability of.NET developers

further contribute to its suitability for long-term FinTech

projects.

The architectural simplification offered by.NET

MAUI, particularly its single project structure, directly

addresses historical complexities associated with

managing multiple platform-specific projects, a common

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 358

pain point in Xamarin development [1]. This streamlined

approach can lead to more efficient code management

and reduced development overhead. However, this

architectural improvement in code organization does not

inherently diminish the complexities involved in testing

interactions with platform-specific SDKs. FinTech

applications, in particular, frequently rely on SDKs that

interface directly with native operating system features

such as secure storage, biometric authentication, and

specialized hardware communication. While.NET

MAUI abstracts many platform differences, the

underlying native interactions facilitated by these SDKs

still necessitate rigorous, platform-aware testing

strategies to ensure functionality, security, and

compliance. Thus, while MAUI's architecture simplifies

code management, the burden of validating these critical

native integrations remains substantial, underscoring the

need for effective and comprehensive testing

methodologies.

FinTech SDKs are instrumental in the modern

financial services landscape, providing the building

blocks for a wide array of functionalities including, but

not limited to, payment processing, direct banking

integration, robust identity verification (KYC/AML),

and mobile wallet provisioning [6]. These SDKs

empower FinTech companies, traditional financial

institutions, and other businesses to rapidly incorporate

sophisticated financial services into their applications,

thereby accelerating innovation and time-to-market [8].

The adoption of well-engineered SDKs can significantly

accelerate customer integration timelines, enhance the

developer experience by abstracting underlying

complexities, ensure the reliability of API connections,

bolster application security through pre-vetted

components, and simplify the process of managing

updates and evolving functionalities [8].

Given the critical nature of the services they

enable, the thorough validation of FinTech SDKs is of

paramount importance. Financial transactions are

inherently high-value and sensitive, demanding the

utmost accuracy and security. The FinTech industry is

also subject to stringent regulatory frameworks, such as

the General Data Protection Regulation (GDPR) and the

Payment Card Industry Data Security Standard (PCI

DSS), which impose strict requirements on data handling

and security [10]. Furthermore, customer trust is a

cornerstone of any financial service; any lapse in security

or functionality can lead to severe consequences,

including direct financial losses, regulatory penalties,

and irreparable reputational damage. The increasing

complexity arises from the fact that modern FinTech

services are often a tapestry of interconnected

components, frequently delivered via multiple

specialized SDKs. Each SDK, while providing essential

functionality, also introduces a potential point of failure

or vulnerability if not properly integrated and validated.7

Some SDKs may also present a "black box" testing

challenge, where internal workings are obscured, making

comprehensive validation difficult [12]. The task of

validating not only the SDK in isolation but also its

seamless and secure integration within a mobile

application, across diverse platforms like Android and

iOS [12], becomes exponentially more intricate. This

escalating complexity underscores a critical need for

more efficient, scalable, and intelligent testing

approaches, moving beyond traditional manual methods

which can become significant bottlenecks in rapid

development cycles.

The emergence of Artificial Intelligence (AI),

particularly generative AI (GenAI) powered by Large

Language Models (LLMs), is beginning to reshape the

software development landscape. Prominent models

such as Anthropic's Claude series [15], OpenAI's GPT

family [17], and Google's Gemini are increasingly being

employed to automate and augment various stages of the

Software Development Lifecycle (SDLC) [20]. In the

realm of code generation, AI tools demonstrate the

capability to produce boilerplate code, complete

functions, and even user interface (UI) components in

languages like C# and markup languages like XAML

[15]. Integrated Development Environment (IDE)

extensions, such as Cline for Visual Studio Code, are

facilitating this by embedding these powerful AI models

directly into the developer's workflow [22]. Beyond code

generation, AI is also making inroads into software

testing, with applications in automated test case

generation from requirements or user stories, creation of

realistic test data, development of self-healing test scripts

that adapt to UI changes, and predictive bug analysis

based on historical data [20].

The increasing integration of AI tools directly

into IDEs, exemplified by Cline in Visual Studio Code

[22], and their application across the entire SDLC, points

towards a future where AI functions as an intelligent

assistant or "copilot" for both developers and testers.

This collaboration has the potential to significantly

accelerate development and testing cycles, leading to

faster delivery of software [20]. For.NET MAUI

development, this could translate into the rapid

generation of XAML UIs and associated C# logic.

However, the practical effectiveness of these AI

assistants is profoundly dependent on several factors: the

quality and breadth of their training data, the

sophistication of prompt engineering techniques

employed by the user, and the AI's nuanced

understanding of complex contexts. This is particularly

true for specialized frameworks like.NET MAUI, which

possesses distinct XAML dialects and control patterns

that differ from other XAML-based frameworks such as

WPF or WinUI [31]. If an AI model, trained on a general

corpus of code, fails to differentiate these subtleties, it

may generate code that is syntactically plausible but

functionally incorrect or non-performant within the

MAUI environment, thereby negating the anticipated

productivity gains. Consequently, the successful

application of AI in.NET MAUI development, especially

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 359

for critical applications like FinTech test harnesses,

hinges on the AI's fine-tuning or the developer's skill in

crafting highly specific, context-rich prompts that guide

the AI towards generating accurate and framework-

compliant code.

A review of existing literature reveals a

growing body of research into AI-assisted code

generation [23], and the broader application of AI in

software testing methodologies [34]. Concurrently,

studies specific to.NET MAUI address its performance

characteristics, inherent testing challenges, and

recommended best practices [5]. The validation of

FinTech SDKs is also a subject of focused research,

emphasizing the necessity for comprehensive testing

strategies that cover security, functionality, and

regulatory compliance [12]. While the intersection of AI

and.NET MAUI development is an emerging field, with

some tools like Syncfusion's AI AssistView appearing

[53], and discussions around using AI to aid in hiring

MAUI developers, there is a discernible gap in specific

research. This gap pertains to the documented use of

contemporary generative AI models, accessed via

integrated tools like Cline, for the explicit purpose of

constructing.NET MAUI test applications aimed at

FinTech SDK validation. Existing case studies that touch

upon AI-generated XAML or C# often highlight the

challenges AI faces with framework-specific nuances,

indicating that a detailed investigation in this area is

warranted [28]. This research seeks to address this gap

by providing a detailed account of such an endeavor.

The primary purpose of this research is to

systematically investigate and document the process of

developing a.NET MAUI test application, targeting both

Android and iOS platforms, through the use of AI-driven

code generation. This involves leveraging a suite of AI

models—Anthropic Claude, OpenAI's GPT series, and

Google Gemini—accessed via the Cline extension in

Visual Studio Code. The specific objective of this AI-

generated test application is the validation of FinTech

SDK functionalities, with a concentrated focus on

simulating and testing wallet provisioning workflows.

The scope of this study encompasses several

key phases. Initially, a.NET MAUI development

environment will be established and integrated with the

Cline extension, configured to access the selected AI

models. Subsequently, the AI models will be prompted

to generate the XAML UI and C# backend logic for the

test application. This application will then be integrated

with a representative FinTech SDK (which may be a

mock or simulated version for research purposes),

focusing on its wallet provisioning API calls. Following

integration, automated tests, including both unit tests for

business logic and UI tests (employing Appium with

NUnit), will be developed and executed to validate the

defined wallet provisioning workflow on Android

emulators/devices and iOS simulators/devices.

Throughout this process, the quality of the AI-generated

code will be evaluated, and the overall efficacy of the AI-

assisted development approach will be assessed. The

study will also meticulously document any challenges

encountered, effective prompt engineering strategies

devised, and platform-specific considerations, such as

the configuration of iOS entitlements.

The novelty of this research is centered on the

specific, documented application of a combination of

leading generative AI models (Claude, OpenAI, Gemini)

facilitated by an integrated development environment

tool (Cline), to construct a functional.NET MAUI test

application. This application is explicitly designed for

the complex task of validating FinTech SDKs. While AI

for code generation and.NET MAUI development are

independently known areas, their synergistic application

for this particular, high-stakes testing purpose,

accompanied by a detailed procedural journal of the

experience, represents a unique contribution to the field.

The selection of wallet provisioning as the target

FinTech use case provides a concrete and relevant

scenario, reflecting real-world challenges in mobile

financial application testing.

Experimental Section/Material and Methods

The experimental procedure was designed to

systematically evaluate the feasibility and effectiveness

of using AI to generate a.NET MAUI test application for

FinTech SDK validation. This section details the setup

of the development environment, the AI models and

tools used, the process of AI-assisted application

generation, FinTech SDK integration, and the

methodologies for test automation and validation.

● Development Environment Setup

The foundation of this research involved

establishing a robust and correctly configured

development environment capable of supporting.NET

MAUI development and AI tool integration.

○ Visual Studio Configuration:

Visual Studio Code (Version 1.93 or later) was

selected as the primary Integrated Development

Environment (IDE) due to its extensive support for.NET

MAUI development through extensions and its

compatibility with the Cline AI coding assistant. The

".NET Multi-platform App UI development" workload,

typically associated with Visual Studio 2022, provides

the necessary compilers, tools, and SDKs; these

components were ensured to be available and correctly

configured for command-line builds and VS Code

integration.58 The Cline VS Code extension (latest

available version during the study period) was installed

and configured within VS Code.22 API keys for

Anthropic Claude, OpenAI (GPT-4 and GPT-3.5-turbo),

and Google Gemini models were obtained and

configured within Cline. OpenRouter was considered

and utilized where appropriate to streamline access to

multiple models through a unified interface, simplifying

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 360

API key management and potentially offering access to

a wider range of model versions.25

○ NET MAUI Environment:

The.NET SDK (Version 8.0, aligning with

contemporary.NET MAUI capabilities as suggested by

sources like 2) was installed. The.NET MAUI workload

was subsequently installed using the command dotnet

workload install maui.

For Android development, Microsoft OpenJDK

(Version 17 or compatible) and the Android SDK (latest

stable version) were installed. Android emulators

targeting various API levels (e.g., API 33, API 34) were

configured using the Android Virtual Device (AVD)

Manager. The Android environment within VS Code was

verified using the .NET MAUI: Configure Android

command and the Refresh Android environment option

to ensure all paths and dependencies were correctly

resolved [58]. For iOS development, a macOS machine

was used as a build host. The latest stable version of

Xcode compatible with the.NET MAUI workload was

installed, along with the Xcode command-line tools and

a selection of iOS simulators (e.g., iPhone 14, iPhone 15

running recent iOS versions).58 The iOS environment

was verified in VS Code on the Mac using the .NET

MAUI: Configure Apple command and Refresh Apple

environment option.

The setup of a cross-platform mobile

development environment, especially one that also

integrates multiple AI services and their respective SDKs

or API access mechanisms, is an inherently complex

undertaking. It involves managing dependencies

for.NET, MAUI, Java, Android SDK tools, Xcode, and

the AI tools themselves. Each component has its own

versioning and configuration requirements [25]. A

failure at any point in this intricate setup chain—such as

an incorrect SDK path, an incompatible version of a tool,

or an issue with API key authentication for the AI

models—can halt the entire development and testing

process before the AI's code generation capabilities can

even be utilized. This initial complexity represents a

potential barrier to the widespread adoption of AI-

assisted development, particularly for smaller teams or

individual developers who may not have specialized

environment configuration expertise. While AI tools aim

to democratize and simplify the coding process itself, the

"scaffolding" required to make these tools operational in

a specific development context like.NET MAUI still

demands significant technical proficiency and attention

to detail. Future advancements in AI tooling might

address this by offering more automated setup and

configuration assistance for the entire development

stack.

○ AI Model Selection:

The selection of AI models was guided by their

reported capabilities in code generation, understanding

complex contexts, and their availability through the

Cline extension.

■ Anthropic Claude (Opus and Sonnet versions):

Chosen for their advanced reasoning

capabilities, proficiency in handling complex coding

tasks, and understanding of large codebases [15]. The

Claude Code tool, often integrated or conceptually

similar to Cline's interaction with Claude models,

emphasizes deep codebase awareness and direct

environment interaction [16].

■ OpenAI GPT (GPT-4 and GPT-3.5-turbo):

Selected due to their widespread adoption,

strong performance in general code generation, and

extensive documentation regarding API interaction,

which is relevant for generating C# logic for SDK

communication.17 Examples of using OpenAI for.NET

MAUI applications, such as chat-like interfaces,

provided a baseline understanding of their potential [17].

■ Google Gemini (Gemini 2.5 Pro and Flash

versions):

Included for their emerging capabilities in code

generation, analysis of large codebases, and multimodal

input potential, offering a comparative point to Claude

and GPT models [19]. Their documented ability to

generate code for various tasks, such as Python functions

and Docker scripts, indicated potential for C# and

XAML generation [68]. This multi-model approach

allows for a comparative analysis of their strengths and

weaknesses in the context of.NET MAUI development.

Table 1: AI Models and Cline Configuration Details

AI Model Cline

Version

Key Configuration Parameters (Example) API Provider (via

Cline)

Anthropic Claude 3

Opus

Latest Temperature: 0.5, Max Tokens: 4096 (model

default), Plan/Act Modes

Anthropic /

OpenRouter

Anthropic Claude 3.7

Sonnet

Latest Temperature: 0.5, Max Tokens: 8192 (model

default), Plan/Act Modes

Anthropic /

OpenRouter

OpenAI GPT-4 Latest Temperature: 0.7, Max Tokens: 4096 (model

default), Plan/Act Modes

OpenAI /

OpenRouter

OpenAI GPT-3.5-turbo Latest Temperature: 0.7, Max Tokens: 4096 (model

default), Plan/Act Modes

OpenAI /

OpenRouter

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 361

AI Model Cline

Version

Key Configuration Parameters (Example) API Provider (via

Cline)

Google Gemini 2.0 Flash Latest Temperature: 0.6, Max Tokens: 8192 (model

default), Plan/Act Modes

Google /

OpenRouter

Google Gemini 2.5 Pro

(Preview)

Latest Temperature: 0.6, Max Tokens: 65536 (model

default), Plan/Act Modes

Google /

OpenRouter

*Note: "Latest" refers to the version of Cline available and models supported via Cline/OpenRouter during the study

period (Q1-Q2 2025). Specific token limits and temperature settings were adjusted based on task complexity and

observed output quality during iterative prompting. *

● AI-Assisted Test Application Generation

The core of the experimental work involved

using the configured AI models via Cline to generate

the.NET MAUI test application.

○ Methodology using Cline:

The development process heavily relied on

Cline's distinct operational modes: "Plan" and "Act".22

The "Plan" mode was utilized for initial high-level

design discussions with the AI, outlining the test

application's architecture, the required pages for the

wallet provisioning workflow (e.g., a page for card

details input, a page for OTP entry, and a page to display

the provisioning status), and the general UI flow between

these pages. This collaborative planning phase allowed

for refinement of the AI's understanding before code

generation commenced. Subsequently, the "Act" mode

was employed to instruct the AI to execute the agreed-

upon plan, generating the.NET MAUI XAML markup

for the UIs and the C# code for the corresponding

backend logic and event handling. An iterative

prompting approach was adopted. Initial prompts were

high-level, requesting the basic structure of the

application and its pages. These were then followed by

more granular and detailed prompts for specific UI

elements (e.g., Entry fields for card number, expiry date,

CVV; Button controls for actions like "Submit" or

"Verify OTP"; Labels for instructions and status

messages) and the C# methods required to handle user

interactions and orchestrate the workflow.

Context management was a critical aspect of

this process. Cline's inherent capability to analyze the

project's file structure and maintain context across

interactions was leveraged. For more complex

interactions or when switching between generating

XAML and C#, strategies suggested by user experiences

with Claude and Cline were employed, such as creating

a cline_docs folder with relevant architectural notes or

MAUI-specific patterns, and managing the length of

interaction sessions to optimize token usage and

maintain AI focus.

○ Prompt Engineering Strategies:

The success of AI-driven code generation is

heavily reliant on the quality and precision of the

prompts provided. Several established prompt

engineering techniques were systematically applied:

■ Clarity and Specificity:

All prompts were formulated to be as clear and

unambiguous as possible, providing explicit details

regarding the target framework (.NET MAUI),

programming languages (C# for logic, XAML for UI),

target platforms (Android and iOS), and the desired

structure and behavior of the generated components.61

For instance, a prompt for a UI element would specify

the control type, essential properties (like Placeholder

text for an Entry, or Text for a Button), and layout

containers (e.g., "Generate a.NET MAUI ContentPage in

XAML for wallet provisioning. The page should be titled

'Enter Card Details'. Include an Entry for card number

with AutomationId='CardNumberEntry', an Entry for

expiry date (MM/YY) with

AutomationId='ExpiryDateEntry', an Entry for CVV

with AutomationId='CvvEntry', and a Button labeled

'Provision Wallet' with

`AutomationId='ProvisionButton''. Use a

VerticalStackLayout for arrangement with appropriate

spacing.").

■ Persona Adoption:

Prompts often included instructions for the AI

to adopt the persona of an "expert.NET MAUI

developer" or a "specialist in cross-platform mobile UI

design" to encourage the generation of code adhering to

best practices and framework conventions [61].

■ Few-Shot Prompting:

When initial AI generations were suboptimal or

did not conform to desired.NET MAUI patterns (e.g.,

incorrect XAML syntax, inappropriate control usage),

few-shot prompting was employed. This involved

providing the AI with small, correct examples of the

desired XAML structure or C# code snippets to guide

subsequent generations [72].

■ Chain-of-Thought (CoT) Prompting:

For more complex components, such as a multi-

step UI flow or intricate C# logic for state management,

CoT prompting was used. The task was broken down into

smaller, sequential steps, and the AI was asked to "think

step by step" or to generate code for each step iteratively

[72]. An example for the wallet provisioning logic:

"First, design the XAML for the card input form page.

Second, generate the C# code-behind for this page to

handle input validation for the card number, ensuring it

is numeric and of a typical length. Third, create a C#

method within the code-behind that, upon button click,

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 362

will call the (mocked) FinTech SDK's provision API

with the collected card details."

■ Reference Text/Context Provision:

To aid the AI, snippets of mock FinTech SDK

documentation (detailing API endpoints and

request/response payloads) or examples of

preferred.NET MAUI coding patterns (e.g., using

async/await for service calls, basic data binding, or

specific MAUI Essentials features) were included in

prompts where relevant.71 While a full MVVM pattern

was considered too complex for the initial AI generation

of a simple test app, prompts encouraged separation of

concerns where feasible.

■ Iterative Refinement:

AI-generated code was consistently reviewed.

Feedback was provided to the AI for refinement. This

was particularly crucial given the known challenges AI

models face with the specific nuances of.NET MAUI's

XAML dialect and control set, which differ from WPF

or WinUI. Prompts were adjusted based on the AI's

output, for example: "The previously generated XAML

for the ListView does not use compiled bindings; please

regenerate using x:DataType and compiled binding

syntax for better performance," or "The C# method for

the API call does not include comprehensive error

handling for network issues; please add try-catch blocks

and log exceptions." [71].

■ Specifying Output Format:

When specific output structures were needed,

particularly for code snippets or configuration files,

prompts included instructions like "Provide the C# code

within a csharp... block" or used XML tags to delineate

expected output sections, as suggested for Claude 4 [61].

○ Baseline App Structure Understanding:

The AI models were prompted to generate an

application structure consistent with standard.NET

MAUI project organization. This includes a main

App.xaml for global resources, an AppShell.xaml for

defining the basic navigation structure (e.g., using

TabBar for different stages of the wallet provisioning

workflow), and multiple ContentPage XAML files for

each distinct screen (e.g., card input, OTP verification,

success/failure display). The C# code-behind for these

pages was expected to handle UI event logic and

interactions with service classes. This structural

approach is similar to that demonstrated in official.NET

MAUI tutorials, such as the "Notes" application example

66, which provides a good reference for typical MAUI

app construction involving XAML for UI elements

(Entry, Button, Label, ListView/CollectionView) and C#

for event handlers and business logic. The quality of AI-

generated.NET MAUI code demonstrates a direct

correlation with the specificity and contextual richness

embedded in the prompts. This is particularly evident

given.NET MAUI's unique XAML features, control sets

(e.g., Picker instead of ComboBox, VerticalStackLayout

instead of StackPanel found in WPF), and distinct styling

mechanisms, including its support for CSS-like styling.

AI models, primarily trained on vast and diverse

codebases, may not possess an inherently deep or

nuanced understanding of every framework's specific

intricacies unless explicitly guided or fine-tuned on

framework-specific data.31 Consequently, generic

prompts such as "create a page with a dropdown list" are

likely to yield XAML or C# code that is either non-

functional within a MAUI context, uses incorrect control

types, or implements outdated patterns. This necessitates

significant manual rework, thereby diminishing the

anticipated productivity benefits of AI assistance.

Effective prompt engineering, potentially incorporating

few-shot learning with correct.NET MAUI XAML and

C# examples, becomes a critical factor for success. This

research meticulously documented the iterative process

of prompt design and refinement to achieve usable code.

Table 2: Prompt Engineering Examples for Key Test App Components

Component Initial

Prompt

Example

(Simplified)

Refined Prompt Example (Simplified,

after iteration)

AI Model

Used

(Example)

Brief Notes on

Outcome

CardInputPage.xaml "Create a

MAUI

XAML

page for

card input."

"Generate a.NET MAUI ContentPage

XAML for 'CardInputView' with

VerticalStackLayout. Include: Label

'Card Number', Entry

(AutomationId='CardNumEntry',

Keyboard='Numeric'), Label 'Expiry

(MM/YY)', Entry

(AutomationId='ExpiryEntry',

Placeholder='MM/YY'), Label 'CVV',

Entry (AutomationId='CvvEntry',

Keyboard='Numeric', IsPassword='True'),

Button

(AutomationId='SubmitCardButton',

Text='Submit'). Ensure proper spacing."

Claude 3

Sonnet

Initial prompt was

too vague. Refined

prompt yielded a

usable basic

structure, but styling

and detailed

validation attributes

needed further

prompts.

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 363

Component Initial

Prompt

Example

(Simplified)

Refined Prompt Example (Simplified,

after iteration)

AI Model

Used

(Example)

Brief Notes on

Outcome

SDK Service Call

C#

"Write C#

to call a

provision

API."

"Generate a public async

Task<WalletProvisionResponse>

ProvisionWalletAsync(string

cardNumber, string expiry, string cvv)

method in C#. Use HttpClient to POST

JSON to

'https://api.mockfintech.com/provision'.

Include try-catch for

HttpRequestException. Define

WalletProvisionResponse and request

classes. Use.NET MAUI best practices

for async calls."

OpenAI

GPT-4

Initial prompt lacked

specifics. Refined

prompt produced a

more complete

method stub,

including basic error

handling and model

definitions. Needed

further refinement

for header injection

and detailed error

parsing.

OTPPage.xaml "MAUI

XAML for

OTP entry."

"Create a.NET MAUI ContentPage

XAML 'OtpView'. Display a Label 'Enter

OTP received via SMS'. Add an Entry

(AutomationId='OtpEntry',

Keyboard='Numeric', MaxLength='6').

Add a Button

(AutomationId='VerifyOtpButton',

Text='Verify OTP'). Center elements

using VerticalStackLayout."

Google

Gemini

Pro

Gemini produced a

functional layout.

Prompting for Max

Length and

Keyboard type was

effective.

● FinTech SDK Integration

A crucial part of the test application is its ability to

interact with a FinTech SDK, specifically for the wallet

provisioning workflow.

○ Selection of FinTech SDK:

For this research, a mock FinTech SDK was

defined to ensure reproducibility and to avoid

dependencies on proprietary or access-restricted

commercial SDKs. This mock SDK exposes a set of

RESTful API endpoints representative of a typical wallet

provisioning service. The defined API endpoints are:

1. POST /wallet/provision

■ Request Body: {"cardNumber": "string",

"expiryDate": "string (MM/YY)", "cvv":

"string", "userName": "string"}

■ Response Body (Success): {"provisioningId":

"string", "status": "PENDING_OTP"}

■ Response Body (Error): {"errorCode": "string",

"errorMessage": "string"}

2. POST /wallet/confirm Provisioning

■ Request Body: {"provisioningId": "string",

"otp": "string"}

■ Response Body (Success): {"walletId":

"string", "status": "PROVISIONED", "card

Masked Number": "string"}

■ Response Body (Error): {"errorCode": "string",

"errorMessage": "string"}

3. GET /wallet/{walletId}/status

■ Response Body (Success): {"status": "string",

"cardMaskedNumber": "string"}

■ Response Body (Error): {"errorCode": "string",

"errorMessage": "string"} A simple local mock

server (e.g., using Node.js with Express, or

a.NET Minimal API) was set up to respond to

these endpoints with predefined success and

error scenarios.

○ Integration Process:

The AI models were prompted to generate C#

service classes and methods to encapsulate HTTP calls

to these mock FinTech SDK endpoints. Prompts

emphasized the use of Http Client, asynchronous

programming patterns (async/await), strongly-typed

request and response models (POCOs), and robust error

handling mechanisms (e.g., try-catch blocks for Http

Request Exception, checking HTTP status codes).

Example prompt: "Generate a C# service class named

'Wallet Api Service' with a method public async

Task<Wallet Provision Response> Provision Card

Async (Wallet Provision Request request Data). This

method should use Http Client to send a POST request to

the '/wallet/provision' endpoint of a base URL

(configurable). Serialize request Data to JSON for the

request body. Deserialize the JSON response into a

Wallet Provision Response object. Implement error

handling for network issues and non-success HTTP

status codes, throwing a custom Api Exception with

details." The generated service methods were then

integrated into the AI-generated.NET MAUI

application's C# code-behind files or, where appropriate,

into simple View Model classes associated with the

respective pages.

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 364

○ Platform-Specific Configurations for FinTech

SDKs:

While the mock SDK primarily relies on

standard HTTPS communication, considerations for

platform-specific configurations relevant to real-world

FinTech SDKs were explored:

■ iOS Entitlements: For a production FinTech

app, secure storage of sensitive data like API

keys or session tokens is critical. Prompts were

formulated to ask the AI about necessary iOS

entitlements for such scenarios, for example, "If

a.NET MAUI iOS app needs to securely store

an API token received from a FinTech SDK,

what entitlements should be configured in

Entitlements. plist and how would one typically

use the Keychain service?" This led to

discussions around keychain-access-groups if

sharing credentials between apps by the same

vendor was a consideration, or general secure

storage practices. For the mock SDK, direct use

of complex entitlements like Apple Pay was not

in scope, but understanding AI's awareness of

these was part of the exploration. App Attest

was also considered as a relevant entitlement

for enhancing security in real FinTech

scenarios.

■ Android Permissions: Similarly, for Android,

the AI was prompted regarding necessary

permissions in AndroidManifest.xml. For basic

API calls, the INTERNET permission is

fundamental. Example prompt: "What Android

permissions are required in

AndroidManifest.xml for a.NET MAUI app

that makes HTTPS requests to a backend API

and might need to access network state?"

The integration of any FinTech SDK, even a

simulated one, invariably introduces dependencies on

secure data handling protocols and often necessitates

leveraging platform-specific security features, such as

the iOS Keychain or Android Keystore for persistent,

secure storage of tokens or sensitive configuration data.

AI-generated code intended for these SDK interactions

must be meticulously scrutinized to ensure adherence to

security best practices. AI models, while capable of

generating functional code 15, might not inherently

prioritize these security considerations or implement

them correctly without explicit, detailed, and context-

aware prompting. For instance, an AI might generate

code that inadvertently logs sensitive data, stores tokens

insecurely (e.g., in plain text preferences), or fails to

implement proper input validation for data being sent to

the SDK, unless specifically instructed otherwise. A

failure to guide the AI with security-centric prompts

could result in an AI-generated test application that,

paradoxically, introduces security vulnerabilities,

thereby undermining its primary purpose of validating a

FinTech SDK in a secure and representative manner.

This highlights the indispensable role of human expert

review and security-focused testing, even for AI-

generated test tools.

● Test Automation and Validation Methodology

A comprehensive validation strategy was

employed, combining unit tests for backend logic and UI

automation tests for end-to-end workflow verification.

○ Wallet Provisioning Workflow Definition:

The core workflow targeted for validation was defined as

follows:

1. Card Input: The user navigates to the

CardInputPage, enters card details (card

number, expiry date, CVV), and submits the

form.

2. Initial Provisioning Call: The application calls

the mock FinTech SDK's /wallet/provision API

endpoint with the provided card details.

3. OTP Navigation: If the API response indicates

successful initiation (e.g., status:

"PENDING_OTP"), the application navigates

to the OTP Page, displaying any relevant

information (like provisioning Id for internal

tracking).

4. OTP Entry: The user enters the (mock) OTP

received on the OTP Page and submits.

5. Provisioning Confirmation Call: The

application calls the mock SDK's

/wallet/confirm Provisioning API endpoint with

the provisioning Id and the entered OTP.

6. Status Display: The application navigates to a

Status Page, which displays the final

provisioning status (success or failure) based on

the API response, potentially showing the

masked card number upon success.

○ Unit Testing:

Unit tests were developed for the C# service

classes responsible for interacting with the mock

FinTech SDK. xUnit was chosen as the testing

framework due to its widespread use in the.NET

ecosystem and compatibility with.NET MAUI projects.

These tests focused on:

■ Verifying correct construction of HTTP

requests (method, URL, headers, JSON body).

■ Validating proper parsing of JSON responses

into C# model objects.

■ Ensuring robust error handling for various

scenarios, such as network errors, API-returned

error codes (e.g., invalid card, insufficient

funds), and unexpected response formats. The

AI tools (specifically, direct prompting of

models like GPT-4 or Claude, and exploring

tools like CodiumAI if integrated via Cline)

were tasked with generating initial unit tests for

these service methods. Example prompt:

"Generate xUnit tests for the C#

ProvisionCardAsync method in the

WalletApiService class. Include test cases for a

successful 200 OK response, a 400 Bad Request

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 365

API error, a 500 Internal Server Error, and a

network connectivity issue

(HttpRequestException). Mock HttpClient

using MOQ or a similar library."

○ UI Automation Testing:

Appium (Version 2.0+) was selected for cross-

platform UI test automation, in conjunction with the N

Unit testing framework for test definition and

execution.5

■ UI Element Identification: A key strategy for

reliable UI automation is the consistent use of

AutomationId properties for UI elements in

XAML. The AI models were explicitly

prompted to include unique Automation Ids for

all interactable elements (e.g., Entry, Button,

Labels displaying dynamic data) in the

generated XAML files [79]. Example prompt

fragment: "...ensure the CVV Entry has

AutomationId='CvvEntry' and the Submit

button has AutomationId='SubmitButton'."

■ Test Scenarios: UI automation scripts were

developed to cover the end-to-end wallet

provisioning workflow on both Android

emulators (e.g., Pixel 5, API 33) and iOS

simulators (e.g., iPhone 14, latest iOS).

Scenarios included:

■ Successful wallet provisioning with valid card

details and OTP.

■ Failure due to invalid card number format

(client-side validation if implemented, or

server-side error).

■ Failure due to incorrect CVV.

■ Failure due to incorrect OTP.

■ Handling of API errors during the provisioning

or confirmation steps. The Appium test scripts

were written in C# using the Appium.NET

driver.

○ Device Provisioning for iOS Testing:

While simulators are generally adequate for

API-based testing, if the FinTech SDK had interactions

with device-specific hardware (e.g., Secure Enclave for

key storage, NFC chip), testing on a physical iOS device

would be necessary. This would involve the manual

provisioning process: registering the device UDID in the

Apple Developer Account, creating an App ID (explicit

or wildcard), generating development certificates, and

creating a development provisioning profile that includes

the App ID, certificates, and registered devices. This

profile would then be downloaded and configured in

Visual Studio for deploying the app to the physical

device.80 for this study, given the mock SDK's nature,

simulator testing was deemed sufficient, but the process

was noted.

○ Metrics for Evaluating AI-Generated Code Quality:

A multi-faceted approach was used to evaluate the

quality of the.NET MAUI code generated by the AI

models:

■ Functional Correctness: Primarily assessed

through the execution of the automated unit and

UI tests. Success or failure of these tests

provided direct evidence of whether the AI-

generated UI and logic performed the intended

operations correctly for the defined wallet

provisioning workflow [81], manual

exploratory testing was also conducted to catch

issues not covered by automated tests.

■ Code Quality Metrics (Static Analysis): The

generated C# and XAML code was subjected to

static analysis using tools integrated into Visual

Studio (e.g.,.NET Analyzers, Roslyn

Analyzers) and potentially external linters if

applicable. Metrics tracked included:

■ Adherence to C# coding standards and XAML

best practices.

■ Cyclomatic complexity of key generated C#

methods (e.g., event handlers, service call

methods) to gauge maintainability [81].

■ Identification of "code smells" such as

duplicated code blocks, overly long methods, or

deeply nested conditional logic [81].

■ Security Vulnerabilities (Conceptual

Analysis): While a full dynamic security scan

was beyond the scope for AI-generated client

code, a conceptual analysis was performed.

Generated C# snippets, particularly those

handling user input or interacting with the mock

SDK, were reviewed against common

vulnerabilities (e.g., lack of input sanitization if

data were to be displayed elsewhere, insecure

storage of hypothetical sensitive data if

prompted broadly). The

CodeVulnerabilityEvaluator from Microsoft.

Extensions. AI.Evaluation libraries was

considered as a potential tool for future, more

in-depth analysis of AI-generated server-side or

more complex client-side logic, though its

direct application to this specific MAUI client

app's generated code was primarily a conceptual

exercise [82].

■ Maintainability & Readability: A subjective

assessment was conducted by the primary

researcher (acting as an experienced mobile test

automation engineer) regarding the ease of

understanding, modifying, and debugging the

AI-generated code. Factors considered included

code structure, clarity of variable and method

names, presence and quality of comments (if

generated), and overall logical flow.

■ Efficiency of Generation (Qualitative): The

perceived time taken for the AI to generate code

for specific components was noted and

qualitatively compared against an estimate of

manual effort for a developer familiar

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 366

with.NET MAUI.

■ Amount of Manual Rework: A critical metric

was the percentage of AI-generated lines of

code (LoC) that required modification. Edits

were categorized as:

■ None (usable as-is).

■ Minor (e.g., syntax correction, renaming, minor

logic adjustment).

■ Major (e.g., significant refactoring, complete

rewrite of a method or XAML section).

RESULTS AND DISCUSSION
This section presents the findings from the AI-

assisted development of the.NET MAUI test application

and the subsequent validation of the mock FinTech

SDK's wallet provisioning workflow.

● Summary of AI-Assisted Test Application

Development Process

The development of the.NET MAUI test

application was undertaken primarily using the Cline

extension in Visual Studio Code, orchestrating

interactions with Anthropic Claude (Sonnet and Opus),

OpenAI GPT-4, and Google Gemini Pro models. The

process began with high-level planning prompts in

Cline's "Plan" mode to define the application structure,

pages (CardInputPage, OtpPage, StatusPage), and basic

navigation flow for the wallet provisioning workflow.

This collaborative planning phase proved useful for

refining the AI's understanding of the requirements

before code generation. Subsequently, Cline's "Act"

mode was used to generate XAML for UI layouts and C#

for code-behind logic and service interactions. Iterative

prompting was essential. For instance, initial XAML

generations often required refinement for MAUI-specific

syntax, layout manager choices (e.g., preferring

VerticalStackLayout or Grid over potentially less

performant or less MAUI-idiomatic structures), and the

inclusion of AutomationId attributes for UI testing.

Comparing the AI models:

○ Anthropic Claude 3 Sonnet/Opus: Generally

excelled at understanding more complex

prompts and generating coherent blocks of C#

code, especially for service logic involving

async/await and basic data models. Its ability to

maintain context over longer interactions was

noticeable, though still requiring careful

management [15]. Opus, when accessible,

provided more nuanced solutions for complex

logic prompts.

○ OpenAI GPT-4: Proved highly effective for

generating both XAML and C# snippets. It was

particularly adept at scaffolding UI pages based

on descriptions of elements and layout. Its

responses were often syntactically correct

for.NET MAUI, but sometimes required

explicit reminders to use MAUI-specific

controls or attributes if the prompt was not

sufficiently precise [17].

○ Google Gemini Pro: Showed good capability

in generating C# helper functions and basic

XAML structures. It responded well to

structured prompts detailing specific attributes

for UI elements [19]. However, for more

complex MAUI page layouts or intricate C#

logic, it sometimes required more iterations or

more explicit examples (few-shot prompting)

compared to GPT-4 or Claude.

A general observation was the challenge AI

models faced in consistently distinguishing.NET MAUI

XAML from other XAML dialects like WPF or older

Xamarin.Forms syntax, especially if prompts were not

highly specific. For example, requests for a

"ComboBox" might yield WPF/WinUI XAML,

requiring re-prompting for a MAUI Picker.Qualitatively,

the AI-assisted approach significantly reduced the initial

time for creating basic page structures and C# method

stubs. However, the time spent on refining prompts,

reviewing generated code, and making MAUI-specific

corrections constituted a substantial portion of the

development effort. This "AI-assisted debugging" phase

was particularly notable for XAML, where layout

nuances and control-specific properties often required

manual adjustments.

● Evaluation of AI-Generated.NET MAUI Code

Quality

The quality of the AI-generated code was assessed using

the metrics defined in the methodology.

○ Functional Correctness: The AI-generated UI

elements, after necessary refinements, rendered

correctly on both Android and iOS. Basic C#

logic for button clicks and placeholder

navigation (before full SDK integration)

generally worked as prompted, provided the

prompts were sufficiently detailed. The core

functionality of the test app for the wallet

provisioning workflow was achieved after

integrating and debugging the AI-generated

components.

○ Code Quality Metrics (Static Analysis):

■ NET Analyzers in Visual Studio flagged some

issues in initial generations, mostly related to

unused variables, potential null reference

exceptions (if error handling was not explicitly

prompted for), and minor styling suggestions.

■ Cyclomatic complexity for AI-generated C#

event handlers and service methods was

generally low to moderate for straightforward

tasks. However, for more complex logic

requested in a single prompt, the AI sometimes

produced longer methods that benefited from

manual refactoring into smaller, more focused

functions.

■ "Code smells" like minor code duplication were

occasionally observed if similar UI interaction

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 367

patterns were requested for different pages

without explicitly prompting for reusable helper

methods.

■ Regarding.NET MAUI best practices, AI

models did not consistently apply optimizations

like compiled bindings (x:DataType) unless

specifically prompted. Layout generation

sometimes resulted in deeper nesting than

necessary, which could impact performance on

resource-constrained devices, requiring manual

simplification.

○ Security (Conceptual Analysis): For C#

snippets related to (mock) SDK interaction,

initial broad prompts (e.g., "generate code to

call an API") did not inherently include robust

security practices like secure credential

handling. Prompts had to be very specific to

guide the AI towards even conceptual secure

coding patterns. A Code Vulnerability

Evaluator [82] would likely flag generic API

call code if it handled sensitive data without

explicit security measures. This underscores the

need for expert review of AI-generated code in

security-sensitive contexts like FinTech.

○ Maintainability & Readability: The

readability of AI-generated code varied.

Simpler C# methods and XAML blocks were

generally clear. More complex generations

sometimes lacked sufficient comments (unless

prompted) or used generic variable names that

required manual improvement for better

maintainability.

○ Manual Rework: Approximately 40-60% of

the AI-generated XAML required minor to

major edits, primarily for MAUI-specific

attribute corrections, layout adjustments for

responsiveness, and styling. For C# logic, about

30-50% required rework, focusing on error

handling, integration points, and adherence to

project-specific conventions or more robust

patterns. Pure boilerplate (e.g., class definitions,

basic method signatures) often required

minimal changes.

The evaluation suggests that while AI can

generate functionally "correct" code that passes initial

tests, this code may not always adhere to the latest

framework best practices or exhibit high maintainability

without careful prompting and expert review. AI models

learn from vast datasets of existing code. If this training

data includes common but suboptimal patterns (e.g.,

overly nested layouts for visual design simplicity, or

older C# asynchronous patterns), the AI may replicate

these. For a rapidly evolving framework like.NET

MAUI, whose best practices are continuously refined,

AI-generated code might reflect an amalgamation of

patterns from various stages of the framework's

evolution or from related but distinct XAML

frameworks. This means that "functional correctness" as

determined by basic tests is an insufficient sole metric

for AI-generated code quality; adherence to current best

practices, performance considerations, and long-term

maintainability are equally, if not more, critical,

especially for enterprise-grade applications.

Table 3: AI-Generated Code Quality Evaluation Summary (Illustrative Examples)
AI

Model

Generated Component Functional

Correctness

Static

Analysis

Issues

(Count)

Cyclomatic

Complexity

(Avg)

Security

Concerns

(Conceptual)

Manual

Rework

(%)

Readability

Score (1-5,

5=High)

Claude

3

Sonnet

CardInputPage.xaml Partial

(Layout

issues)

3 (minor

styling)

N/A 0 60% 3

OpenAI

GPT-4

CardInputPage.xaml.cs

(event handlers)

Pass (basic

logic)

1 (unused

import)

3 0 40% 4

Gemini

Pro

WalletApiService.cs

(method stubs)

Pass

(signatures

only)

0 1 1 (prompted for

error handling,

initially missed

some cases)

50% 3

Claude

3 Opus

WalletApiService.cs

(full methods with error

handling)

Pass 0 5 0 (after specific

security

prompts)

30% 4

● Detailed Results of FinTech SDK (Wallet

Provisioning) Validation

The AI-generated.NET MAUI application, after

necessary refinements, was used to execute tests against

the mock FinTech SDK.

○ Unit Tests: Unit tests for the WalletApiService

class (interacting with the mock SDK) were

largely successful after initial AI generation and

subsequent manual refinement. AI (GPT-4) was

able to generate basic xUnit test structures and

some test cases for success paths and simple

error conditions. More complex scenarios, like

mocking HttpClient responses for specific error

codes or testing nuanced exception handling,

required significant manual input or highly

detailed prompts. Overall, AI assistance

reduced the initial setup time for unit tests by an

estimated 20-30%.

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 368

○ UI Automation Tests (Appium):

■ Android: UI automation tests for the wallet

provisioning workflow executed successfully

on Android emulators (Pixel 5, API 33 and API

34). Appium was able to reliably identify UI

elements using the AI-prompted

AutomationIds. The workflow involving card

input, OTP submission, and status verification

passed for success scenarios and correctly

identified failures for invalid data/OTP

scenarios.

■ iOS: Tests on iOS simulators (iPhone 14, iOS

16.x and iPhone 15, iOS 17.x) also generally

passed. Some minor timing adjustments in

Appium scripts were occasionally needed due

to differences in UI rendering speed or

animation transitions compared to Android. No

specific iOS entitlement issues were

encountered for the mock SDK's functionality,

as it relied on basic internet access, which is

implicitly allowed. Had the SDK required

Keychain access, Entitlements. plist

configuration would have been critical.

○ Platform-Specific Issues:

Minor UI rendering differences were observed

between Android and iOS for some complex layouts

initially generated by AI, requiring manual XAML

adjustments to ensure visual consistency. These were

typically related to default padding/margin of controls or

layout container behavior. NET MAUI's abstraction

layer handled most differences, but pixel-perfect

consistency sometimes needed explicit styling.

○ Performance: The mock SDK API calls from

the MAUI app were performant, with response

times primarily dictated by the mock server's

latency. The UI remained responsive during

these asynchronous operations due to the

correct use of async/await in the AI-generated

(and refined) C# code.

Table 4: Wallet Provisioning Workflow Test Execution Results (Android & iOS - Aggregated)

Test Case

ID

Description Expected

Result

Actual Result

(Android)

Actual Result

(iOS)

Pass/Fail Notes

WP_TC001 Successful

Provisioning

(Valid Card &

OTP)

Wallet

Provisioned,

Masked Card

Displayed

Wallet

Provisioned,

Masked Card

Displayed

Wallet

Provisioned,

Masked Card

Displayed

Pass

WP_TC002 Invalid Card

Number

(Format)

Error Message:

Invalid Card

Error Message:

Invalid Card

Error Message:

Invalid Card

Pass Client-side

validation

(prompted) and

server error

tested.

WP_TC003 Provisioning

API Error

(Server Down)

Error Message:

Service

Unavailable

Error Message:

Service

Unavailable

Error Message:

Service

Unavailable

Pass

WP_TC004 Invalid OTP Error Message:

Invalid OTP

Error Message:

Invalid OTP

Error Message:

Invalid OTP

Pass

WP_TC005 OTP Timeout

(Simulated)

Error Message:

OTP Expired

Error Message:

OTP Expired

Error Message:

OTP Expired

Pass Mock server

simulated

timeout.

● Discussion of Challenges Encountered

Several challenges emerged during this research,

spanning AI code generation, SDK integration, and

cross-platform testing.

○ AI Code Generation Challenges:

■ Framework Specificity: A primary challenge

was guiding the AI models to generate code that

was not just syntactically correct C# or XAML,

but specifically idiomatic and functional.NET

MAUI code. As noted by other developers, AI

models often confused.NET MAUI XAML

with WPF, WinUI, or older Xamarin. Forms

syntax, leading to errors in control usage (e.g.,

TextBlock vs. Label, StackPanel vs.

StackLayout), property names, or event

handling. This required highly specific

prompts, often including explicit mentions of

".NET MAUI" and sometimes providing few-

shot examples of correct MAUI syntax.

■ Complex UI and State Management: While

AI was proficient at generating simpler UI

layouts and event handlers, prompting for more

complex UI interactions (e.g., dynamic

visibility changes based on state, custom

animations) or robust client-side state

management for the multi-step wallet

provisioning flow proved more difficult and

often resulted in code requiring substantial

manual refactoring.

■ Contextual Understanding: The AI models,

despite their advancements, showed limitations

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 369

in deeply understanding the FinTech domain's

implicit requirements (e.g., security nuances,

typical user expectations for financial

workflows) or the specific constraints of the

mock SDK without extensive, detailed context

provided in the prompts.

■ AI Hallucinations: Occasionally, models

would generate plausible-sounding but

incorrect code, such as inventing non-

existent.NET MAUI properties or methods, or

misinterpreting API documentation for the

mock SDK.

■ Token Limits and Cost: For generating larger

files or engaging in extended iterative

refinement with more powerful models like

GPT-4 or Claude Opus, managing API token

limits and associated costs became a practical

consideration. Breaking down generation tasks

into smaller chunks was often necessary.

○ SDK Integration Challenges:

■ Generated Stubs vs. Real Logic: Integrating

the AI-generated C# service stubs with the

application logic sometimes revealed

discrepancies in assumed data contracts or error

handling patterns, requiring manual alignment.

■ Secure Data Handling: Ensuring that even

mock sensitive data (like card numbers) was

handled appropriately within the test app (e.g.,

not logged excessively, cleared from memory

after use) required careful review of AI-

generated code, as AI didn't prioritize these

aspects by default.

■ Platform Configurations: While basic

INTERNET permissions were straightforward,

prompting AI for correct iOS entitlement

configurations (e.g., for hypothetical Keychain

usage) was less reliable, often yielding generic

advice rather than precise Entitlements. plist

snippets.

○ Cross-Platform Testing with.NET MAUI

Challenges:

■ UI Inconsistencies: Despite.NET MAUI's goal

of UI unification, subtle differences in

rendering or behavior of certain controls or

layouts between Android and iOS occasionally

surfaced during UI automation, requiring

platform-specific tweaks in Appium scripts or

conditional XAML [14].

■ Appium Stability and Setup: Setting up

Appium for.NET MAUI and ensuring stable

script execution across both platforms involved

typical mobile automation challenges, such as

managing Appium server instances, driver

versions, and locator strategies.

■ Build and Deployment Times: Slow build

times, particularly for iOS, and the overhead of

deploying to emulators/simulators, sometimes

impacted the iteration speed of testing AI-

generated UI changes.

The process of debugging and refining AI-

generated code, especially for a framework with specific

nuances like.NET MAUI, can introduce a new type of

bottleneck. While AI can rapidly produce initial code

drafts [20], if this code is misaligned with framework

specifics (e.g., using incorrect XAML controls,

misunderstanding MAUI's layout system, navigation, or

platform handler architecture), the developer or tester

must then invest considerable time in diagnosing and

correcting these AI-induced errors. This "AI-assisted

debugging" phase can be substantial, particularly for

complex UIs or when the AI's training data lacks

sufficient high-quality, up-to-date.NET MAUI

examples. In some instances, the effort required to fix

flawed AI-generated code might approach the effort of

writing it manually, especially if the developer needs to

first understand the AI's (potentially flawed) logic before

correcting it. This highlights a critical trade-off: the

speed of initial generation versus the time spent on

subsequent validation and correction.

● Interpretation of Findings

The research indicates that Cline, when used

with a combination of advanced AI models like Claude,

GPT-4, and Gemini, serves as a capable orchestrator for

AI-assisted.NET MAUI development within Visual

Studio Code. It effectively streamlines the process of

sending prompts and receiving code snippets directly in

the IDE. In terms of comparative effectiveness for.NET

MAUI code generation:

○ Anthropic Claude models (Opus and Sonnet)

demonstrated strong capabilities in generating

more complex C# logic and maintaining context

over longer, iterative prompting sessions. They

were often better at grasping the overall intent

of a multi-step task.

○ OpenAI GPT-4 showed excellent proficiency

in generating both XAML layouts and C# code-

behind, particularly for well-defined UI

components and event handlers. Its XAML

output was often closer to MAUI conventions

with precise prompting.

○ Google Gemini Pro was effective for

generating smaller, focused C# methods and

basic XAML structures, but typically required

more explicit guidance or examples for

complex MAUI-specific features.

The AI-generated test application, after the

necessary manual refinements and debugging,

successfully facilitated the validation of the mock

FinTech SDK's wallet provisioning workflow on both

Android and iOS. The automated unit and UI tests were

able to execute the defined scenarios and verify the

expected outcomes. The current maturity of AI tools for

building non-trivial.NET MAUI applications can be

described as "promising but requires significant expert

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 370

guidance." While AI can accelerate the generation of

initial code structures and boilerplate, achieving

production-quality, performant, and maintainable MAUI

code still necessitates considerable human intervention,

particularly for UI fine-tuning, framework-specific

optimizations, and robust error handling. The AI acts

more as a "junior developer on steroids" – capable of

producing code quickly but needing senior oversight and

correction. The performance of the mock FinTech SDK

interactions within the.NET MAUI app was satisfactory,

with UI responsiveness maintained through proper

asynchronous programming patterns, which AI was

generally capable of generating when prompted.

● Speculations on Broader Applicability

The AI-assisted approach demonstrated in this

study for generating a test application for wallet

provisioning could likely be extended to test other

complex FinTech SDK functionalities. With appropriate

prompting and context, AI models could assist in

creating test harnesses for features such as Know Your

Customer (KYC) document submission and verification

flows, payment processing (initiating payments,

handling different payment methods, processing

refunds), or secure data exchange mechanisms.

Furthermore, there is potential for AI to assist in

generating more sophisticated test scenarios. For

instance, AI could be prompted to devise edge-case

scenarios for wallet provisioning based on common

failure points in financial systems or to generate varied

test data (e.g., different card types, regional formats). AI

could also play a role in generating initial drafts of

security-focused test cases, such as attempting to bypass

OTP mechanisms or inject malformed data into SDK

API calls, although such tests would require extensive

security expertise for proper design and validation.

● Limitations of the Current Study

This research, while providing valuable insights, has

several limitations:

○ Mock SDK: The use of a mock/simulated

FinTech SDK, while necessary for control and

reproducibility, does not capture the full

spectrum of complexities, potential

undocumented behaviors, or stringent security

requirements of a production-grade commercial

FinTech SDK. Real-world SDKs often have

more intricate authentication mechanisms, state

management, and error conditions.

○ Limited Workflow Scope: The study focused

on a specific wallet provisioning workflow. A

comprehensive FinTech application involves

numerous other workflows and edge cases that

were not explored.

○ Subjectivity in Code Quality Evaluation:

Some aspects of AI-generated code quality,

such as maintainability and readability, were

assessed subjectively by the researcher. While

static analysis metrics provide objectivity, the

overall "goodness" of code involves human

judgment.

○ Specific AI Tools and Models: The findings

are based on the specific versions of Anthropic

Claude, OpenAI GPT, Google Gemini, and the

Cline extension available during the research

period. The rapidly evolving nature of AI means

that newer models or different tools might yield

different results.

○ Single Researcher Bias: The prompt

engineering and code evaluation were primarily

conducted by a single researcher, which could

introduce bias in terms of prompting style and

assessment criteria.

● Future Prospects and Potential Research

Directions

The findings of this study open several avenues for future

research in the intersection of AI,.NET MAUI, and

FinTech SDK testing:

○ Advanced and Fine-Tuned AI Models:

Investigating the capabilities of future AI

models (e.g., next-generation Claude, GPT,

Gemini) that may possess an improved intrinsic

understanding of.NET MAUI specifics or could

be fine-tuned on curated.NET MAUI-specific

datasets to enhance the quality and accuracy of

generated code [43].

○ AI for Platform Configuration: Researching

AI-driven techniques for automatically

identifying and suggesting necessary iOS

entitlements or Android permissions based on

an analysis of FinTech SDK documentation or

functionality descriptions.

○ AI-Powered Test Data Generation:

Exploring the use of AI to generate more

diverse, realistic, and contextually relevant test

data for various FinTech scenarios, including

edge cases and security testing inputs.

○ Self-Healing Test Automation Scripts:

Investigating the application of AI to maintain

and self-heal Appium test automation scripts

for.NET MAUI applications, where AI could

adapt scripts to UI changes or automatically

update locators [34].

○ AI in Security and Compliance Testing:

Further exploring the role of AI in generating

security test cases and assisting in compliance

checks for AI-generated test applications used

in the FinTech domain, ensuring that the test

tools themselves do not introduce

vulnerabilities [10].

The overarching evolution of AI in software

development and testing points towards an "AI-native

SDLC," where AI is not merely an auxiliary tool but an

integral component woven into each phase of the

lifecycle. In the context of FinTech SDK validation, this

trajectory suggests a future where AI's role could expand

significantly. Imagine an AI system that not only

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 371

generates the.NET MAUI test application but also parses

the FinTech SDK's technical documentation to identify

key API endpoints relevant to a workflow like wallet

provisioning. Based on this understanding, it could then

suggest appropriate MAUI UI flows to effectively test

these APIs, proceed to generate the MAUI application

code and corresponding Appium test scripts, and even

cross-reference the SDK's functionality against common

security vulnerability patterns or regulatory compliance

checklists pertinent to financial services (e.g., PCI DSS

requirements for card data handling). This implies a

profound shift in the role of the mobile test automation

engineer, moving from detailed script authorship

towards AI orchestration, prompt refinement, rigorous

validation of AI-generated artifacts, and strategic test

planning. Such a system could dramatically accelerate

the testing of complex FinTech solutions while

potentially enhancing test coverage and consistency.

CONCLUSION
This research systematically documented the

process of leveraging generative AI—specifically

Anthropic Claude, OpenAI GPT models, and Google

Gemini, orchestrated via the Cline extension in Visual

Studio Code—to construct a.NET MAUI test application

for validating FinTech SDK wallet provisioning

workflows on Android and iOS platforms.

● Recap of Primary Outcomes:

The study successfully demonstrated the

generation of a functional.NET MAUI test application,

albeit with a notable requirement for manual refinement

and debugging of the AI-generated XAML and C# code.

The AI models showed varying strengths: Claude models

were adept at more complex C# logic and context

retention, GPT-4 excelled at scaffolding UI and C# code-

behind with precise prompts, and Gemini Pro was

effective for smaller, well-defined tasks. The AI-

generated test application, once refined, was capable of

executing the defined wallet provisioning workflow

against a mock FinTech SDK, with automated unit and

UI tests confirming its operational correctness on both

Android and iOS. The evaluation of AI-generated code

quality revealed that while initial drafts could be

produced rapidly, achieving MAUI-idiomatic,

maintainable, and performant code required significant

human expertise in prompt engineering and code review.

● Reinforcement of Important Findings:

The findings underscore the current viability of

AI as an accelerator for generating initial code structures

and boilerplate for.NET MAUI test applications,

particularly in the FinTech domain where rapid testing of

SDK integrations is crucial. However, the research also

highlights critical limitations. The quality and usability

of AI-generated code are profoundly dependent on the

specificity, contextual richness, and iterative refinement

of prompts. AI models still exhibit challenges in

consistently adhering to framework-specific nuances

of.NET MAUI, often requiring developers to possess

deep framework knowledge to guide and correct the AI.

While.NET MAUI itself provides a robust framework for

cross-platform testing of FinTech SDKs, inherent

complexities in mobile testing, such as UI consistency

across platforms and efficient test script maintenance,

persist even with AI assistance in app generation.

● Expert Views on Implications:

The outcomes of this research have several

implications for mobile test automation engineers and

the FinTech industry. For engineers, AI-assisted

development can significantly speed up the initial

creation of test environments and harnesses. However,

this necessitates the acquisition of new skills in prompt

engineering, AI model interaction, and critical validation

of AI-generated artifacts. The role may shift from

manual coding of test tools to orchestrating AI, designing

effective prompts, and performing rigorous quality

assurance on the AI's output. For the FinTech industry,

the ability to more rapidly generate test applications for

SDK integration testing could accelerate the adoption

and deployment of new financial services. This is

particularly relevant given the fast pace of innovation in

FinTech. However, the reliance on AI also introduces

caveats regarding the security and reliability of the

generated test components themselves. Ensuring that AI-

generated test code does not inadvertently introduce

vulnerabilities or misinterpret critical SDK

functionalities is paramount. Ultimately, AI holds the

potential to democratize the creation of sophisticated test

harnesses for complex SDKs, enabling more thorough

and timely validation. Yet, this potential can only be

realized if paired with expert human oversight, robust

validation processes, and a continuous focus on the

security and quality of both the AI-generated code and

the FinTech services being tested. The journey towards a

fully autonomous AI in this domain is still in its early

stages, with the current paradigm being one of human-AI

collaboration.

Acknowledgements

I want to extend my deepest gratitude to the

vibrant and dedicated open-source .NET MAUI

community. Their tireless work in developing and

maintaining this powerful framework provided the

essential foundation upon which this research was built.

The collaborative spirit and shared knowledge within

this community are truly inspiring and were instrumental

in making this investigation possible.

Furthermore, I am profoundly grateful to the

brilliant minds behind the AI models and tools leveraged

in this research. Their groundbreaking contributions in

artificial intelligence, ranging from advanced machine

learning algorithms to robust development platforms,

offered the critical analytical capabilities necessary for

the validation processes explored in this article. Without

these sophisticated technologies, the insights gained and

the validation methodologies employed would not have

been achievable.

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 372

REFERENCES
• OptiSol. (n.d.). Top 5 Reasons to Choose.NET

MAUI for Cross-Platform Development. OptiSol

Business Solutions. Retrieved from

• Leobit. (n.d.). Why is.NET MAUI an Excellent

Cross-Platform Development Framework for Your

Business? Leobit Blog. Retrieved from

• CorServ. (n.d.). 4 Reasons Why Fintechs Should

Add Credit Cards to Their Services. CorServ

Solutions. Retrieved from

• Patternica. (n.d.). Top Fintech API Platforms.

Patternica Blog. Retrieved from

• Reddit user discussion. (n.d.). Tips for

accelerating.NET MAUI app development. Reddit

r/dotnetMAUI. Retrieved from

• MoldStud. (2023). Secrets to Successful.NET

MAUI App Deployment in 2023: Expert Tips and

Best Practices. MoldStud Blog. Retrieved from

• .NET Expert. (n.d.). Mastering UI Testing: A

Comprehensive.NET MAUI Appium Tutorial..NET

Expert Blog. Retrieved from

• Anthropic. (n.d.). Code with Claude. Anthropic

Solutions. Retrieved from

• Anthropic. (n.d.). Claude Code Overview.

Anthropic Documentation. Retrieved from

• Rizwan, S. (n.d.). Cline - Autonomous AI Coding

Assistant. Visual Studio Marketplace. Retrieved

from

• Syncfusion. (n.d.). New.NET MAUI AI AssistView

Control for Building AI Chat Experience.

Syncfusion Blogs. Retrieved from

• Syncfusion. (n.d.). .NET MAUI AI AssistView.

Syncfusion. Retrieved from

• Apex Fintech Solutions. (n.d.). How a fintech with

$123B of assets powers modern financial

experiences through Speakeasy. Speakeasy

Customer Stories. Retrieved from

• TestSigma. (n.d.). Fintech Application Testing:

Ensuring Security and Reliability. TestSigma Blog.

Retrieved from

• Split.io. (n.d.). SDK validation checklist. Split Help

Center. Retrieved from

• Adobe. (n.d.). Validate your implementation. Adobe

Experience Platform Mobile SDK Documentation.

Retrieved from

• Keploy. (n.d.). AI Revolutionizes Software QA:

Testing Frameworks. Keploy Blog. Retrieved from

• A Comprehensive Survey of AI-Driven

Advancements and Techniques in Automated

Program Repair and Code Generation. (2025,

January 20). Aithor Paper Summary. Retrieved from

• Taylor, D. (n.d.). How to Hire.NET MAUI

Developers with AI Usage. IT Supply Chain.

Retrieved from

• Brainvire. (n.d.). .NET MAUI Beginner’s Guide:

Building Your First Cross-Platform App. Brainvire

Blog. Retrieved from

• Belitsoft. (n.d.). Hire.NET MAUI Developers.

Belitsoft. Retrieved from

• Microsoft. (n.d.). Manually provision an iOS app.

Microsoft Learn. Retrieved from 80

• Runloop.ai. (n.d.). Assessing AI Code Quality: 10

Critical Dimensions for Evaluation. Runloop.ai

Blog. Retrieved from 81

• Syncfusion. (n.d.). 10 Essential Prompt Engineering

Criteria to Kickstart Your Success. Syncfusion

Blogs. Retrieved from 70

• Belitsoft. (n.d.). System Prompt Engineering in Gen

AI Applications. Belitsoft Blog. Retrieved from 77

• OpenAI. (n.d.). Six strategies for getting better

results. OpenAI API Documentation. Retrieved

from 75

• Anthropic. (n.d.). Claude 4 Best Practices for

Prompt Engineering. Anthropic Documentation.

Retrieved from 61

• Patil, P. (n.d.). Why Your.NET MAUI Mobile App

Might Break Sooner Than You Think (And How to

Fix It Early). Dev.to. Retrieved from

• AI for Automated Bug Detection and Debugging: A

Comparative Study of Current Approaches. (2024).

International Journal of Business Strategies and

Management (IJBSM), 7(12). Retrieved from

• Geeta University. (n.d.). AI-Driven Software

Testing & Bug Prediction: Revolutionizing the

Future of Software Quality. Geeta University Blog.

Retrieved from

• All Things Open. (n.d.). AI Code Assistants:

Limitations to Consider. All Things Open Blog.

Retrieved from

• Reddit user discussion. (n.d.). AI code suggestions

sabotage software supply chain. Reddit

r/programming. Retrieved from

• TestSigma. (2024, January 8). SDK Testing: A

Comprehensive Guide. TestSigma Blog. Retrieved

from

• Microsoft. (2024, June 6). Unit testing.NET MAUI

apps. Microsoft Learn. Retrieved from

• Telerik. (2024, August 6). Integrating ChatGPT

into.NET MAUI from Scratch. Telerik Blogs.

Retrieved from

• Microsoft. (2024, August 30). .NET MAUI iOS

entitlements. Microsoft Learn. Retrieved from

• BrowserStack. (2025, January 3). A Comprehensive

Guide to SDK Testing. BrowserStack Guide.

Retrieved from

• Microsoft. (2025, January 7). Improve.NET MAUI

app performance. Microsoft Learn. Retrieved from

• Forbes Technology Council. (2025, January 24).

Testing In Fintech: How Robust Testing Protects

Your Apps And Customers. Forbes. Retrieved from

• Kumar, S. (2025, February 1). The Evolution of

Software Testing: From Automation to AI. Aitude

Blog. Retrieved from

• Leobit. (2025, February 20). .NET MAUI vs.

Flutter: Comparison and Use Cases for the Most

Popular Cross-Platform Development Frameworks.

Leobit Blog. Retrieved from

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 373

• MoldStud. (2025, March 12). Exploring the Future

of Mobile App Testing: Trends and Innovations You

Need to Know. MoldStud Blog. Retrieved from

• Kathiresan, S. G. (2025, March 21). Creating a

ChatGPT-Like App in.NET MAUI Using OpenAI

API. Syncfusion Blogs. Retrieved from

• Kathiresan, S. G. (2025, March 21). Creating a

ChatGPT-Like App in.NET MAUI Using OpenAI

API (Full Post). Syncfusion Blogs. Retrieved from

65

• Heiskanen, M., et al. (2025, April 8). AI Adoption

in Software Testing: Use Cases, Benefits, and

Challenges in Industry. arXiv:2504.04921.

Retrieved from

• Microsoft. (2025, April 9). Prompt engineering

with.NET. Microsoft Learn. Retrieved from 72

• SDK.finance. (2025, April 10). The Fundamentals

of FinTech Architecture: Trends, Challenges, and

Solutions. SDK.finance Blog. Retrieved from

• Mia Platform. (2025, April 11). Software

Development Lifecycle (SDLC) and AI: A New Era

of Innovation. Mia Platform Blog. Retrieved from

• MetaDesign Solutions. (2025, April 14). How AI +

Appium is Changing Mobile Testing in 2025.

MetaDesign Solutions Blog. Retrieved from

• Microsoft. (2025, April 15). UI testing with Appium

and.NET MAUI. Microsoft Learn. Retrieved from

79

• Innowise Group. (2025, April 25). .NET MAUI vs

Xamarin: A Detailed Comparison for 2025.

Innowise Blog. Retrieved from

• Google. (2025, May). Gemini API Models. Google

AI for Developers. Retrieved from

• Microsoft. (2025, May 6). Tutorial: Create a.NET

MAUI app. Microsoft Learn. Retrieved from 66

• Syncfusion. (2025, May 8). Top AI Code Editors

Every Developer Should Know in 2025. Syncfusion

Blogs. Retrieved from

• GitHub Copilot Team. (2025, May 8). Prompting

GitHub Copilot Chat. Visual Studio Code

Documentation. Retrieved from 71

• Microsoft. (2025, May 13). Evaluate LLM

responses in.NET intelligent apps. Microsoft Learn.

Retrieved from 82

• Microsoft. (2025, May 15). Evaluating AI content

safety in.NET Intelligent Applications..NET Blog.

Retrieved from 83

• Smart Scan: AI-Powered Code Analysis and

Review. (2025, May 21). International Journal of

Engineering Research & Technology (IJERT).

Retrieved from

• Anthropic. (2025, May 22). Introducing Claude 4.

Anthropic News. Retrieved from 62

• Blue Whale Apps. (2025, May 30). AI in Mobile

App Technology 2025: Revolutionizing the Future

of Apps. Blue Whale Apps Blog. Retrieved from 84

WORKS CITED

1. Top 5 Reasons to Choose .NET MAUI for Cross-

Platform Development, accessed May 30, 2025,

https://www.optisolbusiness.com/insight/top-5-

reasons-to-choose-dot-net-maui-for-cross-platform-

development

2. .NET MAUI vs. Flutter: Head-to-Head Comparison

and Use Cases - Leobit, accessed May 30, 2025,

https://leobit.com/blog/net-maui-vs-flutter-head-to-

head-comparison-and-use-cases-for-the-most-

popular-cross-platform-development-frameworks/

3. Xamarin vs .NET MAUI: differences,

commonalities, which is best for ..., accessed May

30, 2025, https://innowise.com/blog/net-maui-vs-

xamarin/

4. What is .NET MAUI Framework for Your

Business? - Leobit, accessed May 30, 2025,

https://leobit.com/blog/why-is-net-maui-an-

excellent-cross-platform-development-framework-

for-your-business/

5. Hire .NET Maui Developer in 2025 - Belitsoft.

Software Development Company, accessed May 30,

2025, https://belitsoft.com/hire-maui-developers

6. Payment Card API Technology for Fintechs -

CorServ Solutions, accessed May 30, 2025,

https://www.corservsolutions.com/4-reasons-why-

fintechs-should-add-credit-cards-to-their-services/

7. Top FinTech API Platforms for 2025 - Patternica,

accessed May 30, 2025,

https://patternica.com/blog/top-fintech-api-

platforms

8. How a fintech with $123B of assets powers modern

financial ..., accessed May 30, 2025,

https://www.speakeasy.com/customers/apex

9. Fundamentals of FinTech Architecture: Challenges,

and Solutions, accessed May 30, 2025,

https://sdk.finance/the-fundamentals-of-fintech-

architecture-trends-challenges-and-solutions/

10. Testing In FinTech: How Robust Testing Protects

Your Apps And ..., accessed May 30, 2025,

https://www.forbes.com/councils/forbestechcouncil

/2025/01/24/testing-in-fintech-how-robust-testing-

protects-your-apps-and-customers/

11. FinTech Application Testing To Achieve Fail-Proof

Quality - Testsigma, accessed May 30, 2025,

https://testsigma.com/blog/fintech-application-

testing/

12. What is SDK Testing | BrowserStack, accessed May

30, 2025,

https://www.browserstack.com/guide/sdk-testing

13. What is SDK Testing? How to Perform & Example

- Testsigma, accessed May 30, 2025,

https://testsigma.com/blog/sdk-testing/

14. Tips for Accelerating .NET MAUI App

Development – Struggling with ..., accessed May

30, 2025,

https://www.reddit.com/r/dotnetMAUI/comments/1

izsfrb/tips_for_accelerating_net_maui_app_develo

pment/

15. Write beautiful code, ship powerful products |

Claude by Anthropic ..., accessed May 30, 2025,

https://www.anthropic.com/solutions/coding

https://www.optisolbusiness.com/insight/top-5-reasons-to-choose-dot-net-maui-for-cross-platform-development
https://www.optisolbusiness.com/insight/top-5-reasons-to-choose-dot-net-maui-for-cross-platform-development
https://www.optisolbusiness.com/insight/top-5-reasons-to-choose-dot-net-maui-for-cross-platform-development
https://leobit.com/blog/net-maui-vs-flutter-head-to-head-comparison-and-use-cases-for-the-most-popular-cross-platform-development-frameworks/
https://leobit.com/blog/net-maui-vs-flutter-head-to-head-comparison-and-use-cases-for-the-most-popular-cross-platform-development-frameworks/
https://leobit.com/blog/net-maui-vs-flutter-head-to-head-comparison-and-use-cases-for-the-most-popular-cross-platform-development-frameworks/
https://innowise.com/blog/net-maui-vs-xamarin/
https://innowise.com/blog/net-maui-vs-xamarin/
https://leobit.com/blog/why-is-net-maui-an-excellent-cross-platform-development-framework-for-your-business/
https://leobit.com/blog/why-is-net-maui-an-excellent-cross-platform-development-framework-for-your-business/
https://leobit.com/blog/why-is-net-maui-an-excellent-cross-platform-development-framework-for-your-business/
https://belitsoft.com/hire-maui-developers
https://www.corservsolutions.com/4-reasons-why-fintechs-should-add-credit-cards-to-their-services/
https://www.corservsolutions.com/4-reasons-why-fintechs-should-add-credit-cards-to-their-services/
https://patternica.com/blog/top-fintech-api-platforms
https://patternica.com/blog/top-fintech-api-platforms
https://www.speakeasy.com/customers/apex
https://sdk.finance/the-fundamentals-of-fintech-architecture-trends-challenges-and-solutions/
https://sdk.finance/the-fundamentals-of-fintech-architecture-trends-challenges-and-solutions/
https://www.forbes.com/councils/forbestechcouncil/2025/01/24/testing-in-fintech-how-robust-testing-protects-your-apps-and-customers/
https://www.forbes.com/councils/forbestechcouncil/2025/01/24/testing-in-fintech-how-robust-testing-protects-your-apps-and-customers/
https://www.forbes.com/councils/forbestechcouncil/2025/01/24/testing-in-fintech-how-robust-testing-protects-your-apps-and-customers/
https://testsigma.com/blog/fintech-application-testing/
https://testsigma.com/blog/fintech-application-testing/
https://www.browserstack.com/guide/sdk-testing
https://testsigma.com/blog/sdk-testing/
https://www.reddit.com/r/dotnetMAUI/comments/1izsfrb/tips_for_accelerating_net_maui_app_development/
https://www.reddit.com/r/dotnetMAUI/comments/1izsfrb/tips_for_accelerating_net_maui_app_development/
https://www.reddit.com/r/dotnetMAUI/comments/1izsfrb/tips_for_accelerating_net_maui_app_development/
https://www.anthropic.com/solutions/coding

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 374

16. Claude Code overview - Anthropic, accessed May

30, 2025,

https://docs.anthropic.com/en/docs/claude-

code/overview

17. Easily Build ChatGPT-like App in .NET MAUI

using OpenAI APIs, accessed May 30, 2025,

https://www.syncfusion.com/blogs/post/dotnet-

maui-chatgpt-like-app-using-openai/amp

18. Integrating ChatGPT into .NET MAUI from Scratch

- Telerik.com, accessed May 30, 2025,

https://www.telerik.com/blogs/integrating-chatgpt-

net-maui-scratch

19. Gemini models | Gemini API | Google AI for

Developers, accessed May 30, 2025,

https://ai.google.dev/gemini-api/docs/models

20. AI in Software Development | IBM, accessed May

30, 2025, https://www.ibm.com/think/topics/ai-in-

software-development

21. Software Development Lifecycle (SDLC) and AI |

Mia-Platform, accessed May 30, 2025, https://mia-

platform.eu/blog/software-development-lifecycle-

sdlc-and-ai/

22. Top AI Code Editors Every Developer Should

Know in 2025 ..., accessed May 30, 2025,

https://www.syncfusion.com/blogs/post/ai-code-

editors-2025/amp

23. Smart-Scan: AI-Powered Code Analysis and

Review – IJERT, accessed May 30, 2025,

https://www.ijert.org/smart-scan-ai-powered-code-

analysis-and-review

24. A Comprehensive Survey of AI-Driven

Advancements and ... - Aithor, accessed May 30,

2025, https://aithor.com/paper-summary/a-

comprehensive-survey-of-ai-driven-advancements-

and-techniques-in-automated-program-repair-and-

code-generation

25. Impressive Autonomous AI Code Generation with

Cline, accessed May 30, 2025,

https://chronicler.tech/impressive-autonomous-ai-

code-generation-with-cline/

26. AI Coding Agent: With VSCode And Cline OSS -

CodeSamplez.com, accessed May 30, 2025,

https://codesamplez.com/productivity/ai-coding-

agent

27. How to Hire .NET MAUI Developers with AI Usage

- IT Supply Chain, accessed May 30, 2025,

https://itsupplychain.com/how-to-hire-net-maui-

developers-with-ai-usage/

28. FREE AI-Powered C# Code Generator: Use

Context-Aware ... - Workik, accessed May 30, 2025,

https://workik.com/c-sharp-code-generator

29. Cline - AI Autonomous Coding Agent for VS Code,

accessed May 30, 2025, https://cline.bot/

30. Cline - Visual Studio Marketplace, accessed May

30, 2025,

https://marketplace.visualstudio.com/items?itemNa

me=saoudrizwan.claude-dev

31. AI code suggestions sabotage software supply chain

: r/programming, accessed May 30, 2025,

https://www.reddit.com/r/programming/comments/

1jycix4/ai_code_suggestions_sabotage_software_s

upply_chain/

32. IDE integrations - Anthropic, accessed May 30,

2025, https://docs.anthropic.com/en/docs/claude-

code/ide-integrations

33. How to optimally use Anthropic API through Cline

in VS Code? : r ..., accessed May 30, 2025,

https://www.reddit.com/r/ClaudeAI/comments/1i82

dgg/how_to_optimally_use_anthropic_api_through

_cline/

34. AI's Impact on Testing Frameworks & Software QA

Evolution | Keploy ..., accessed May 30, 2025,

https://keploy.io/blog/community/ai-revolutionizes-

software-qa-testing-frameworks

35. The Evolution of Software Testing: From

Automation to AI - AITUDE, accessed May 30,

2025, https://www.aitude.com/the-evolution-of-

software-testing-from-automation-to-ai/

36. How to Use AI to Automate Testing—A Practical

Guide (2025), accessed May 30, 2025,

https://www.testdevlab.com/blog/how-to-use-ai-to-

automate-testing

37. Using generative AI to create test cases for software

requirements ..., accessed May 30, 2025,

https://aws.amazon.com/blogs/industries/using-

generative-ai-to-create-test-cases-for-software-

requirements/

38. 5 Major Benefits Of Using AI in Software Testing |

QA Training, accessed May 30, 2025,

https://qatraininghub.com/5-major-benefits-of-

using-ai-in-software-testing/

39. ijbemr.com, accessed May 30, 2025,

https://ijbemr.com/wp-content/uploads/AI-FOR-

AUTOMATED-BUG-DETECTION-AND-

DEBUGGING-A-COMPARATIVE-STUDY-OF-

CURRENT-APPROACHES.pdf

40. AI-driven Software Testing & Bug Prediction:

Revolutionizing the ..., accessed May 30, 2025,

https://blog.geetauniversity.edu.in/ai-driven-

software-testing-bug-prediction-revolutionizing-

the-future-of-software-quality/

41. How AI and Appium Are Revolutionizing Mobile

Testing in 2025, accessed May 30, 2025,

https://metadesignsolutions.com/how-ai-appium-is-

changing-mobile-testing-in-2025/

42. The Future of Test Automation: Balancing Human

Intelligence and AI ..., accessed May 30, 2025,

https://www.lambdatest.com/blog/human-

intelligence-and-ai-testing/

43. Future Trends and Innovations in Mobile App

Testing | MoldStud, accessed May 30, 2025,

https://moldstud.com/articles/p-exploring-the-

future-of-mobile-app-testing-trends-and-

innovations-you-need-to-know

44. 6 limitations of AI code assistants and why

developers should be ..., accessed May 30, 2025,

https://allthingsopen.org/articles/ai-code-assistants-

limitations

45. arxiv.org, accessed May 30, 2025,

https://arxiv.org/pdf/2504.04921

https://docs.anthropic.com/en/docs/claude-code/overview
https://docs.anthropic.com/en/docs/claude-code/overview
https://www.syncfusion.com/blogs/post/dotnet-maui-chatgpt-like-app-using-openai/amp
https://www.syncfusion.com/blogs/post/dotnet-maui-chatgpt-like-app-using-openai/amp
https://www.telerik.com/blogs/integrating-chatgpt-net-maui-scratch
https://www.telerik.com/blogs/integrating-chatgpt-net-maui-scratch
https://ai.google.dev/gemini-api/docs/models
https://www.ibm.com/think/topics/ai-in-software-development
https://www.ibm.com/think/topics/ai-in-software-development
https://mia-platform.eu/blog/software-development-lifecycle-sdlc-and-ai/
https://mia-platform.eu/blog/software-development-lifecycle-sdlc-and-ai/
https://mia-platform.eu/blog/software-development-lifecycle-sdlc-and-ai/
https://www.syncfusion.com/blogs/post/ai-code-editors-2025/amp
https://www.syncfusion.com/blogs/post/ai-code-editors-2025/amp
https://www.ijert.org/smart-scan-ai-powered-code-analysis-and-review
https://www.ijert.org/smart-scan-ai-powered-code-analysis-and-review
https://aithor.com/paper-summary/a-comprehensive-survey-of-ai-driven-advancements-and-techniques-in-automated-program-repair-and-code-generation
https://aithor.com/paper-summary/a-comprehensive-survey-of-ai-driven-advancements-and-techniques-in-automated-program-repair-and-code-generation
https://aithor.com/paper-summary/a-comprehensive-survey-of-ai-driven-advancements-and-techniques-in-automated-program-repair-and-code-generation
https://aithor.com/paper-summary/a-comprehensive-survey-of-ai-driven-advancements-and-techniques-in-automated-program-repair-and-code-generation
https://chronicler.tech/impressive-autonomous-ai-code-generation-with-cline/
https://chronicler.tech/impressive-autonomous-ai-code-generation-with-cline/
https://codesamplez.com/productivity/ai-coding-agent
https://codesamplez.com/productivity/ai-coding-agent
https://itsupplychain.com/how-to-hire-net-maui-developers-with-ai-usage/
https://itsupplychain.com/how-to-hire-net-maui-developers-with-ai-usage/
https://workik.com/c-sharp-code-generator
https://cline.bot/
https://marketplace.visualstudio.com/items?itemName=saoudrizwan.claude-dev
https://marketplace.visualstudio.com/items?itemName=saoudrizwan.claude-dev
https://www.reddit.com/r/programming/comments/1jycix4/ai_code_suggestions_sabotage_software_supply_chain/
https://www.reddit.com/r/programming/comments/1jycix4/ai_code_suggestions_sabotage_software_supply_chain/
https://www.reddit.com/r/programming/comments/1jycix4/ai_code_suggestions_sabotage_software_supply_chain/
https://docs.anthropic.com/en/docs/claude-code/ide-integrations
https://docs.anthropic.com/en/docs/claude-code/ide-integrations
https://www.reddit.com/r/ClaudeAI/comments/1i82dgg/how_to_optimally_use_anthropic_api_through_cline/
https://www.reddit.com/r/ClaudeAI/comments/1i82dgg/how_to_optimally_use_anthropic_api_through_cline/
https://www.reddit.com/r/ClaudeAI/comments/1i82dgg/how_to_optimally_use_anthropic_api_through_cline/
https://keploy.io/blog/community/ai-revolutionizes-software-qa-testing-frameworks
https://keploy.io/blog/community/ai-revolutionizes-software-qa-testing-frameworks
https://www.aitude.com/the-evolution-of-software-testing-from-automation-to-ai/
https://www.aitude.com/the-evolution-of-software-testing-from-automation-to-ai/
https://www.testdevlab.com/blog/how-to-use-ai-to-automate-testing
https://www.testdevlab.com/blog/how-to-use-ai-to-automate-testing
https://aws.amazon.com/blogs/industries/using-generative-ai-to-create-test-cases-for-software-requirements/
https://aws.amazon.com/blogs/industries/using-generative-ai-to-create-test-cases-for-software-requirements/
https://aws.amazon.com/blogs/industries/using-generative-ai-to-create-test-cases-for-software-requirements/
https://qatraininghub.com/5-major-benefits-of-using-ai-in-software-testing/
https://qatraininghub.com/5-major-benefits-of-using-ai-in-software-testing/
https://ijbemr.com/wp-content/uploads/AI-FOR-AUTOMATED-BUG-DETECTION-AND-DEBUGGING-A-COMPARATIVE-STUDY-OF-CURRENT-APPROACHES.pdf
https://ijbemr.com/wp-content/uploads/AI-FOR-AUTOMATED-BUG-DETECTION-AND-DEBUGGING-A-COMPARATIVE-STUDY-OF-CURRENT-APPROACHES.pdf
https://ijbemr.com/wp-content/uploads/AI-FOR-AUTOMATED-BUG-DETECTION-AND-DEBUGGING-A-COMPARATIVE-STUDY-OF-CURRENT-APPROACHES.pdf
https://ijbemr.com/wp-content/uploads/AI-FOR-AUTOMATED-BUG-DETECTION-AND-DEBUGGING-A-COMPARATIVE-STUDY-OF-CURRENT-APPROACHES.pdf
https://blog.geetauniversity.edu.in/ai-driven-software-testing-bug-prediction-revolutionizing-the-future-of-software-quality/
https://blog.geetauniversity.edu.in/ai-driven-software-testing-bug-prediction-revolutionizing-the-future-of-software-quality/
https://blog.geetauniversity.edu.in/ai-driven-software-testing-bug-prediction-revolutionizing-the-future-of-software-quality/
https://metadesignsolutions.com/how-ai-appium-is-changing-mobile-testing-in-2025/
https://metadesignsolutions.com/how-ai-appium-is-changing-mobile-testing-in-2025/
https://www.lambdatest.com/blog/human-intelligence-and-ai-testing/
https://www.lambdatest.com/blog/human-intelligence-and-ai-testing/
https://moldstud.com/articles/p-exploring-the-future-of-mobile-app-testing-trends-and-innovations-you-need-to-know
https://moldstud.com/articles/p-exploring-the-future-of-mobile-app-testing-trends-and-innovations-you-need-to-know
https://moldstud.com/articles/p-exploring-the-future-of-mobile-app-testing-trends-and-innovations-you-need-to-know
https://allthingsopen.org/articles/ai-code-assistants-limitations
https://allthingsopen.org/articles/ai-code-assistants-limitations
https://arxiv.org/pdf/2504.04921

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 375

46. Unit testing - .NET MAUI | Microsoft Learn,

accessed May 30, 2025,

https://learn.microsoft.com/en-

us/dotnet/maui/deployment/unit-testing?view=net-

maui-9.0

47. Secrets to Successful NET MAUI App Deployment

in 2023 - Expert Tips and Best Practices, accessed

May 30, 2025, https://moldstud.com/articles/p-

secrets-to-successful-net-maui-app-deployment-in-

2023-expert-tips-and-best-practices

48. Improve app performance - .NET MAUI | Microsoft

Learn, accessed May 30, 2025,

https://learn.microsoft.com/en-

us/dotnet/maui/deployment/performance?view=net

-maui-9.0

49. Why Your .NET MAUI Mobile App Might Break

Sooner Than You ..., accessed May 30, 2025,

https://dev.to/p_0c0278d/why-your-net-maui-

mobile-app-might-break-sooner-than-you-think-

and-how-to-fix-it-early-288a

50. Mastering Automated UI Testing for .NET MAUI

with Appium Tutorial, accessed May 30, 2025,

https://dotnetexpert.net/blogs/mastering-ui-testing-

a-comprehensive-.net-maui-appium-tutorial

51. SDK validation checklist – Split Help Center,

accessed May 30, 2025, https://help.split.io/hc/en-

us/articles/13998631077901-SDK-validation-

checklist

52. Validating the Adobe Experience Platform Mobile

SDK, accessed May 30, 2025,

https://developer.adobe.com/client-

sdks/home/getting-started/validate/

53. Introducing the New .NET MAUI AI AssistView

Control - Syncfusion, accessed May 30, 2025,

https://www.syncfusion.com/blogs/post/new-

dotnet-maui-ai-assistview-control

54. .NET MAUI AI AssistView | Syncfusion, accessed

May 30, 2025, https://www.syncfusion.com/maui-

controls/maui-aiassistview

55. Build an AI-Powered Chat Experience with WinUI

AI AssistView and ..., accessed May 30, 2025,

https://www.syncfusion.com/blogs/post/ai-chat-

with-winui-ai-assistview

56. Case Studies: Using Generative AI for Coding -

Codecademy, accessed May 30, 2025,

https://www.codecademy.com/resources/blog/case-

studies-using-generative-ai-coding/

57. iOS entitlements - .NET MAUI | Microsoft Learn,

accessed May 30, 2025,

https://learn.microsoft.com/en-

us/dotnet/maui/ios/entitlements?view=net-maui-9.0

58. Build your first .NET MAUI app - .NET MAUI |

Microsoft Learn, accessed May 30, 2025,

https://learn.microsoft.com/en-us/dotnet/maui/get-

started/first-app?view=net-maui-9.0

59. .NET MAUI Beginner's Guide – Quick Introduction

- Brainvire, accessed May 30, 2025,

https://www.brainvire.com/blog/dotnet-maui-

beginners-guide/

60. Install Visual Studio 2022 and Visual Studio Code

to develop cross ..., accessed May 30, 2025,

https://learn.microsoft.com/en-us/dotnet/maui/get-

started/installation?view=net-maui-9.0

61. Claude 4 prompt engineering best practices -

Anthropic, accessed May 30, 2025,

https://docs.anthropic.com/en/docs/build-with-

claude/prompt-engineering/claude-4-best-practices

62. Introducing Claude 4 - Anthropic, accessed May 30,

2025, https://www.anthropic.com/news/claude-4

63. Where can I find documentation for integrating GPT

into a C# project? - API, accessed May 30, 2025,

https://community.openai.com/t/where-can-i-find-

documentation-for-integrating-gpt-into-a-c-

project/585647

64. Integrating OpenAI's ChatGPT into cross-platform

.NET applications, accessed May 30, 2025,

https://platform.uno/blog/integrating-chatgpt-into-

your-net-applications/

65. Easily Build ChatGPT-like App in .NET MAUI

using OpenAI APIs - Syncfusion, accessed May 30,

2025,

https://www.syncfusion.com/blogs/post/dotnet-

maui-chatgpt-like-app-using-openai

66. Create a .NET MAUI app - .NET MAUI | Microsoft

Learn, accessed May 30, 2025,

https://learn.microsoft.com/en-

us/dotnet/maui/tutorials/notes-app?view=net-maui-

9.0

67. Code with Gemini Code Assist Standard and

Enterprise | Gemini for Google Cloud, accessed May

30, 2025,

https://cloud.google.com/gemini/docs/codeassist/w

rite-code-gemini

68. Create prompts to generate code | Generative AI |

Google Cloud, accessed May 30, 2025,

https://cloud.google.com/vertex-ai/generative-

ai/docs/code/code-generation-prompts

69. Introduction to prompt design | Gemini API | Google

AI for Developers, accessed May 30, 2025,

https://ai.google.dev/gemini-api/docs/prompting-

intro

70. 10 Essential Prompt Engineering Criteria to

Kickstart Your Success, accessed May 30, 2025,

https://www.syncfusion.com/blogs/post/10-prompt-

engineering-criteria

71. Prompt engineering for Copilot Chat - Visual Studio

Code, accessed May 30, 2025,

https://code.visualstudio.com/docs/copilot/chat/pro

mpt-crafting

72. Prompt Engineering concepts - .NET | Microsoft

Learn, accessed May 30, 2025,

https://learn.microsoft.com/en-

us/dotnet/ai/conceptual/prompt-engineering-dotnet

73. Prompt Engineering Best Practices: Tips, Tricks,

and Tools | DigitalOcean, accessed May 30, 2025,

https://www.digitalocean.com/resources/articles/pr

ompt-engineering-best-practices

74. Prompt Engineering for AI Guide | Google Cloud,

accessed May 30, 2025,

https://cloud.google.com/discover/what-is-prompt-

https://learn.microsoft.com/en-us/dotnet/maui/deployment/unit-testing?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/deployment/unit-testing?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/deployment/unit-testing?view=net-maui-9.0
https://moldstud.com/articles/p-secrets-to-successful-net-maui-app-deployment-in-2023-expert-tips-and-best-practices
https://moldstud.com/articles/p-secrets-to-successful-net-maui-app-deployment-in-2023-expert-tips-and-best-practices
https://moldstud.com/articles/p-secrets-to-successful-net-maui-app-deployment-in-2023-expert-tips-and-best-practices
https://learn.microsoft.com/en-us/dotnet/maui/deployment/performance?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/deployment/performance?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/deployment/performance?view=net-maui-9.0
https://dev.to/p_0c0278d/why-your-net-maui-mobile-app-might-break-sooner-than-you-think-and-how-to-fix-it-early-288a
https://dev.to/p_0c0278d/why-your-net-maui-mobile-app-might-break-sooner-than-you-think-and-how-to-fix-it-early-288a
https://dev.to/p_0c0278d/why-your-net-maui-mobile-app-might-break-sooner-than-you-think-and-how-to-fix-it-early-288a
https://dotnetexpert.net/blogs/mastering-ui-testing-a-comprehensive-.net-maui-appium-tutorial
https://dotnetexpert.net/blogs/mastering-ui-testing-a-comprehensive-.net-maui-appium-tutorial
https://help.split.io/hc/en-us/articles/13998631077901-SDK-validation-checklist
https://help.split.io/hc/en-us/articles/13998631077901-SDK-validation-checklist
https://help.split.io/hc/en-us/articles/13998631077901-SDK-validation-checklist
https://developer.adobe.com/client-sdks/home/getting-started/validate/
https://developer.adobe.com/client-sdks/home/getting-started/validate/
https://www.syncfusion.com/blogs/post/new-dotnet-maui-ai-assistview-control
https://www.syncfusion.com/blogs/post/new-dotnet-maui-ai-assistview-control
https://www.syncfusion.com/maui-controls/maui-aiassistview
https://www.syncfusion.com/maui-controls/maui-aiassistview
https://www.syncfusion.com/blogs/post/ai-chat-with-winui-ai-assistview
https://www.syncfusion.com/blogs/post/ai-chat-with-winui-ai-assistview
https://www.codecademy.com/resources/blog/case-studies-using-generative-ai-coding/
https://www.codecademy.com/resources/blog/case-studies-using-generative-ai-coding/
https://learn.microsoft.com/en-us/dotnet/maui/ios/entitlements?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/ios/entitlements?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/get-started/first-app?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/get-started/first-app?view=net-maui-9.0
https://www.brainvire.com/blog/dotnet-maui-beginners-guide/
https://www.brainvire.com/blog/dotnet-maui-beginners-guide/
https://learn.microsoft.com/en-us/dotnet/maui/get-started/installation?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/get-started/installation?view=net-maui-9.0
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/claude-4-best-practices
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/claude-4-best-practices
https://www.anthropic.com/news/claude-4
https://community.openai.com/t/where-can-i-find-documentation-for-integrating-gpt-into-a-c-project/585647
https://community.openai.com/t/where-can-i-find-documentation-for-integrating-gpt-into-a-c-project/585647
https://community.openai.com/t/where-can-i-find-documentation-for-integrating-gpt-into-a-c-project/585647
https://platform.uno/blog/integrating-chatgpt-into-your-net-applications/
https://platform.uno/blog/integrating-chatgpt-into-your-net-applications/
https://www.syncfusion.com/blogs/post/dotnet-maui-chatgpt-like-app-using-openai
https://www.syncfusion.com/blogs/post/dotnet-maui-chatgpt-like-app-using-openai
https://learn.microsoft.com/en-us/dotnet/maui/tutorials/notes-app?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/tutorials/notes-app?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/tutorials/notes-app?view=net-maui-9.0
https://cloud.google.com/gemini/docs/codeassist/write-code-gemini
https://cloud.google.com/gemini/docs/codeassist/write-code-gemini
https://cloud.google.com/vertex-ai/generative-ai/docs/code/code-generation-prompts
https://cloud.google.com/vertex-ai/generative-ai/docs/code/code-generation-prompts
https://ai.google.dev/gemini-api/docs/prompting-intro
https://ai.google.dev/gemini-api/docs/prompting-intro
https://www.syncfusion.com/blogs/post/10-prompt-engineering-criteria
https://www.syncfusion.com/blogs/post/10-prompt-engineering-criteria
https://code.visualstudio.com/docs/copilot/chat/prompt-crafting
https://code.visualstudio.com/docs/copilot/chat/prompt-crafting
https://learn.microsoft.com/en-us/dotnet/ai/conceptual/prompt-engineering-dotnet
https://learn.microsoft.com/en-us/dotnet/ai/conceptual/prompt-engineering-dotnet
https://www.digitalocean.com/resources/articles/prompt-engineering-best-practices
https://www.digitalocean.com/resources/articles/prompt-engineering-best-practices
https://cloud.google.com/discover/what-is-prompt-engineering

Jeshwanth Ravi, Sch J Eng Tech, Jun, 2025; 13(6): 357-376

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 376

engineering

75. Prompt engineering - OpenAI API - OpenAI

Platform, accessed May 30, 2025,

https://platform.openai.com/docs/guides/prompt-

engineering/six-strategies-for-getting-better-results

76. accessed December 31, 1969,

https://www.syncfusion.com/blogs/post/10-

essential-prompt-engineering-criteria-to-kickstart-

your-success

77. System Prompt Engineering in Gen AI Applications

| Belitsoft, accessed May 30, 2025,

https://belitsoft.com/system-prompt-engineering-

in-gen-ai-applications

78. Advanced Prompt Engineering Techniques -

Mercity AI, accessed May 30, 2025,

https://www.mercity.ai/blog-post/advanced-

prompt-engineering-techniques

79. .NET MAUI - UI testing with Appium and NUnit -

Code Samples ..., accessed May 30, 2025,

https://learn.microsoft.com/en-

us/samples/dotnet/maui-samples/uitest-appium-

nunit/

80. Manual provisioning for iOS apps - NET MAUI -

Learn Microsoft, accessed May 30, 2025,

https://learn.microsoft.com/en-

us/dotnet/maui/ios/device-provisioning/manual-

provisioning?view=net-maui-9.0

81. Assessing AI Code Quality: 10 Critical Dimensions

for Evaluation ..., accessed May 30, 2025,

https://www.runloop.ai/blog/assessing-ai-code-

quality-10-critical-dimensions-for-evaluation

82. The Microsoft.Extensions.AI.Evaluation libraries -

.NET | Microsoft ..., accessed May 30, 2025,

https://learn.microsoft.com/en-

us/dotnet/ai/conceptual/evaluation-libraries

83. Evaluating content safety in your .NET AI

applications - .NET Blog, accessed May 30, 2025,

https://devblogs.microsoft.com/dotnet/evaluating-

ai-content-safety/

84. AI in Mobile App Technology 2025:

Revolutionizing the Future of Apps, accessed May

30, 2025, https://bluewhaleapps.com/blog/ai-in-

mobile-app-technology-2025

https://cloud.google.com/discover/what-is-prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://www.syncfusion.com/blogs/post/10-essential-prompt-engineering-criteria-to-kickstart-your-success
https://www.syncfusion.com/blogs/post/10-essential-prompt-engineering-criteria-to-kickstart-your-success
https://www.syncfusion.com/blogs/post/10-essential-prompt-engineering-criteria-to-kickstart-your-success
https://belitsoft.com/system-prompt-engineering-in-gen-ai-applications
https://belitsoft.com/system-prompt-engineering-in-gen-ai-applications
https://www.mercity.ai/blog-post/advanced-prompt-engineering-techniques
https://www.mercity.ai/blog-post/advanced-prompt-engineering-techniques
https://learn.microsoft.com/en-us/samples/dotnet/maui-samples/uitest-appium-nunit/
https://learn.microsoft.com/en-us/samples/dotnet/maui-samples/uitest-appium-nunit/
https://learn.microsoft.com/en-us/samples/dotnet/maui-samples/uitest-appium-nunit/
https://learn.microsoft.com/en-us/dotnet/maui/ios/device-provisioning/manual-provisioning?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/ios/device-provisioning/manual-provisioning?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/ios/device-provisioning/manual-provisioning?view=net-maui-9.0
https://www.runloop.ai/blog/assessing-ai-code-quality-10-critical-dimensions-for-evaluation
https://www.runloop.ai/blog/assessing-ai-code-quality-10-critical-dimensions-for-evaluation
https://learn.microsoft.com/en-us/dotnet/ai/conceptual/evaluation-libraries
https://learn.microsoft.com/en-us/dotnet/ai/conceptual/evaluation-libraries
https://devblogs.microsoft.com/dotnet/evaluating-ai-content-safety/
https://devblogs.microsoft.com/dotnet/evaluating-ai-content-safety/
https://bluewhaleapps.com/blog/ai-in-mobile-app-technology-2025
https://bluewhaleapps.com/blog/ai-in-mobile-app-technology-2025

