Scholars Journal of Applied Medical Sciences

Abbreviated Key Title: Sch J App Med Sci ISSN 2347-954X (Print) | ISSN 2320-6691 (Online) Journal homepage: https://saspublishers.com OPEN ACCESS

Medical Sciences

Pediatric Infectious Diseases, Vaccines, and Immune Health: An Evidence-Based Scholarly Overview

Munther Abdelrahman Saleh Khdairat^{1*}, Khalil Essam Abutouq¹

¹PHCC, Doha, Qatar

DOI: https://doi.org/10.36347/sjams.2025.v13i11.018 | **Received:** 29.09.2025 | **Accepted:** 12.11.2025 | **Published:** 15.11.2025

*Corresponding author: Munther Abdelrahman Saleh Khdairat

PHCC, Doha, Qatar

Abstract Review Article

Infectious diseases account for one of the highest burdens of morbidity and mortality in children worldwide: they remain an essential cause of death in children <5 years of age and contribute substantially to the global disability-adjusted life years burden in children and adolescents aged 5–14 years. Understanding the immune ontogeny in childhood reveals particular immunological characteristics and windows of susceptibility and resilience. Vaccination is a cornerstone of worldwide public health programs and creates herd immunity, reducing the risk of infection in non-vaccinated individuals. Moreover, the administration of vaccines has effects beyond the specific pathogen against which the vaccine is administered, including the stimulation of the entire immune system in infancy, long-term effects on the immune system, and non-specific immune benefits. Nevertheless, specific groups of children premature infants, those with chronic diseases, immunosuppression, and the immunocompromised may have altered immunological maturation, impaired immune responses, or respond poorly to vaccination. Ethical, legal, and policy aspects relevant to vaccination in the pediatric population must also be considered. The available evidence for these different aspects of infectious disease and vaccination in the pediatric population is systematically reviewed to provide a useful reference summary. Discussion of pediatric infections is, evidently, replete with statistics on the associated morbidity and mortality. Available data indicate that vaccines are effective in highly vulnerable populations, such as HIV-infected children, children from low-income or middle-income countries, and children with immune-mediated conditions receiving immunosuppressive therapies. Attention from researchers and practitioners extend further than the infectious diseases themselves: questions abound concerning the immunocompromised, children living with chronic diseases, or preterm infants' populations for whom vaccination may impose greater risk than in the general cohort or the monitoring of longterm individual and herd-community results from relaxed vaccine schedules. Disparate societies employ differing laws and policies for immunization and vaccination coverage in children, from persistent recommendations to outright mandates.

Keywords: Pediatric infectious diseases; Childhood immunization; Immune ontogeny; Immunocompromised children; Vaccine policy and ethics.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

1. INTRODUCTION

Infectious diseases remain the most prominent causes of global morbidity and mortality in children (Baral *et al.*, 2024). Pathogen- and host-specific interaction patterns suggest that the burden of infection is largely concentrated in the youngest and most vulnerable populations (Brown *et al.*, 2023). The effect of social determinants (e.g., health care access, nutrition, early-life experiences) still takes shape in many regions, where poverty, resource availability, and hygiene continue to modulate community dynamics of pathogen circulation (Khan *et al.*, 2022). In parallel, the agespecific challenges posed by an evolving immune system may influence the outcome of infection and vaccination,

and deficits in innate, adaptive, or integrated responses may compromise early-life immunity, vaccine efficacy, or both (Strong *et al.*, 2021). Such considerations are particularly relevant for premature or low-birthweight infants and those with chronic illness, congenital immune deficiency or dysregulation, and receipt of pharmacological immune suppression (Manetu *et al.*, 2021). Specific populations also include those under national vaccination programs in low-income and middle-income settings with high burdens of disease and continued deficiencies in vaccine access and coverage (Bassat *et al.*, 2023). These contexts highlight the need for evidence-based, age-specific, and population-specific analyses of the epidemiology and immunology

of infectious disease and their intersection with vaccines (Hamson *et al.*, 2023).

Vaccines, immunization, and herd immunity reduce the risk of disease, hospitalization, and death due to the target organism, thus decreasing the overall risk in the population (Doherty et al., 2022). In subgroups with chronic diseases or unstable immune systems, vaccination against specific pathogens also reduces the risk of secondary infections (Carter et al., 2024). Beyond these general principles lies a more complex discussion of the immunological effects of vaccination (or of childhood infections) considered independently of the target pathogens (Talbird et al., 2022). For infants and young children, the maturation of the innate and adaptive immune compartments and functions may complemented by vaccination, and key vaccinationrelated mechanisms or milestones may set the stage for the next phases of life (Jansen et al., 2021). In the early years of life, when adapting to the presence of non-self, the risk of severe disease due to common pathogens is high, and the immune system still remains sensitive to a multitude of (non-)pathogenic stimuli (Mohammed et al., 2022). Using the precept of "training" the immune system, the response to different (but clinically important) pathogens can indeed be optimized and might also extend beyond the obvious targets to non-specific benefits (Micoli et al., 2021)

3. Pediatric Infectious Diseases: Landscape and Emerging Trends

A renewed focus on pediatric injuries will not only improve child health, but also reduce population morbidity and mortality from infectious diseases more broadly (Khan et al., 2022). New insights into the epidemiology, host response, and social determinants of infection in early life will facilitate such an effort. Despite historical progress, infectious diseases remain a leading cause of childhood morbidity, disability, and mortality in many populations (Besnier et al., 2021). A changing world is reshaping the landscape. Human behaviours and natural ecosystems are undergoing rapid transformation, many due to climate change; these changes are altering long-standing relationships between pathogens and human hosts (Brown et al., 2023). New virulence factors and pathogen-host interactions have emerged, particularly in pandemic settings (Paul, 2024). Such trends underscore the need to sustain, not relax, efforts to reduce the incidence and impact of diseasecausing infectious agents in children (Baker et al., 2022).

3.1. Epidemiology and Burden of Disease in Children

Available global data corroborates that infectious diseases remain a substantial cause of death in children, accounting for ~ 1.7 million fatalities per year (2.4 million when including fatalities from vaccine-preventable diseases in non-children) (Brown *et al.*, 2023). Moreover, when assessing infant mortality specifically, $\sim 50\%$ of deaths can be attributed to infectious diseases (Khan *et al.*, 2022). Sepsis,

pneumonia, and diarrhoea represent leading causes of fatality within this age group and are commonly associated with immunosuppression/upstream risk factors, malnutrition, and/or prematurity (Muhammad, 2022). A small number of different pathogens are responsible for most of the infections that lead to severe disease and death among young children (Baral *et al.*, 2024). Indeed, almost 90% of childhood deaths are due to either one of the major bacteria-associated enteric diseases, one of the leading respiratory diseases, both together, or a handful of additional specific diseases (Wang *et al.*, 2021).

3.2. Pathogen-Host Interactions in Early Life

Pediatric infectious diseases have long been associated with high morbidity and mortality, especially in children under five (Long et al., 2022). Passive immune protection from transplacental immunoglobulin transfer, together with maternal vaccinations, supports the infant in the early months of life (Buonsenso et al., 2022). However, crucial components of the immune system undergo remodeling during early childhood, which is associated with increased susceptibility to infections, including invasive disease from encapsulated bacterial and viral infections (Wald et al., 2021). Soon after birth, the diversity of skin and mucosal microbiota increases and a functional immune system develops, which provides broad-spectrum protection against different pathogens (Romandini et al., 2021). In developed countries, vaccination in infancy prevents childhood diseases and complications that were previously common, but natural or vaccine-induced antiviral immunity remains incomplete (Melvin et al., 2022). Continuing research demonstrates that social determinants of health, including early childhood environment, nutrition, and caregiving, affect susceptibility to infectious diseases (Hamson et al., 2023). The incidence of invasive infections with encapsulated bacteria is higher in children of low socioeconomic status and with a lack of breastfeeding, while the lifespan of immune memories appears shorter in children raised in adverse environments (Blanchard and Waters, 2022). In countries with inadequate access to pneumococcal and meningococcal vaccinations, disease incidence emphasizes increased immunization is essential for young children (Abdulla et al., 2022).

4. Immunology of Childhood: Developmental Considerations

During infancy and childhood, the human immune system undergoes a series of evolutionary adaptations (Urlacher, 2023). Although the immune system is established soon after birth, maturation of specific components continues throughout the early years of life, resulting in differential infection susceptibility at the various age milestones (Hong and Medzhitov, 2023). Immune dysfunction in children manifests either as primary immunodeficiency or as immune dysregulation and results in unfavorable health

outcomes (Metcalf *et al.*, 2025). In both cases, vaccination underscores the need to understand the normal development of the pediatric immune system and the expected response to vaccines (Brodin, 2022).

Pediatric infectious disease research has shown that the immature immune system, uniquely different from that of adults, affects susceptibility to infections and diseases (Semmes et al., 2021). Examination of children's responses to immunomodulatory events, particularly immunizations, during the developmental phase informs understanding of the immunologic experience that shapes the responses of older children and adults (Pieren et al., 2022). The pediatric immune response evolves through three distinct periods, with both innate and adaptive systems maturing at different rates (Donald and Finlay, 2023). Training of the immature immune system is an important consideration, particularly in the first year of life, when vaccination schedules offer multiple stimuli that provide instruction to the hematopoietic, myeloid, and lymphoid systems (Liston et al., 2021).

The immune system comprises two functional compartments: the innate and adaptive systems (Wang et al., 2024). Components of the innate response are present at birth and function to defend against infection; however, the magnitude of response is often suboptimal (Kiboneka, 2021). Dysregulation of the innate response is associated with the subsequent onset of allergic diseases, chronic inflammatory diseases, autoimmune disease, and childhood cancers (Weng et al., 2023). The inherent differences in the teleological purpose of infection susceptibility in infants and young children must also be considered relative to the relatively proinflammatory state of the innate immune system at ≤12 months of age (Pieren et al., 2022). The maturation of adaptive immunity is gradual, with a reduction in susceptibility to both specific and non-specific infections typically observed by ≥4 years of age (Molofsky and Locksley, 2023). Poor responses to vaccination in children with primary immunodeficiency also highlight the importance of age-matched vaccine responses (Anaeigoudari et al., 2021).

5. Vaccines in Pediatrics: Principles, Efficacy, and Safety

Five principles underpin vaccination recommendations in the pediatric population: (i) vaccines are offered according to the immunization schedule; (ii) efficacious vaccines afford herd immunity; (iii) immunization is a community-wide and populationlevel health intervention; (iv) vaccine public health policies adhere to the precautionary principle; and (v) the risk of potential serious adverse events is recognizably vanishingly small relative to the alternative of serious disease (Rus and Groselj, 2021). For individual patients, the immunocompromised face special issues of riskbenefit evaluation; the very young and old in the short term, and many during the COVID-19 pandemic, can

experience vaccines remediating not the pathogenic agent but dysregulated host defense; and medically needy children, such as those born very preterm or with chronic illness or treatment, can respond poorly (Ogugua *et al.*, 2024). Special attention is warranted for the infectious disease consequences of immune deficiency, dysregulation, and treatment (Rus and Groselj, 2021).

The unprecedented success of modern vaccination has resulted in remarkably safe vaccines being rulefully assumed to be undeniably beneficial: that there are no longer any "vaccine-preventable" diseases, "vaccine-preventable" mortalities parochially assumes that SARS-CoV-2 vaccines offer widespread protection from symptomatic COVID-19 and are universally desirable for all classes of individuals - has been elsewhere documented (Donald and Finlay, 2023). Nevertheless, during early infancy, the developing immune system lacks sufficient resources for a wide-ranging pathogen-directed response; and, along with treatment-related dysregulation, this places medically needy children at heightened infectious disease risk and warns that any vaccination considered may not be as definitively beneficial as in the healthy school-aged child (Moraes-Pinto et al., 2021). In contradistinction, prior evidence-based analysis has indicated that successful SARS-CoV-2 vaccines do not satisfactorily replicate the natural disease pattern of infection or consequently revert immune homeostasis (Morales et al., 2023).

6. Vaccines and Immune Health Outcomes: Beyond Infection Prevention

Overwhelming evidence confirms that vaccines protect against the vaccine-preventable infectious diseases they target and their associated complications (Hall and for Disease Control and Prevention, 2021). However, there is growing immunological and clinical evidence that vaccines may also influence the development and function of the immune system beyond diseases they prevent (Majstorovic Weatherspoon, 2024). In infancy, the rapid maturation of key innate immune components and the developing adaptive immune system contribute to decisive windows when vaccination may influence the immune system beyond inducing pathogen-directed memory (Al-Jabri et al., 2023). Recent studies suggest that vaccination early in life shapes the functional capacity of the immune system and suppresses unnecessary responses in early childhood; both consequences may persist into later life (Kolobova et al., 2022). Vaccination may also exert important influences beyond protection against targeted diseases, providing non-specific benefits against other infectious diseases, particularly in low-income and middle-income countries (Sinumvayo et al., 2024).

Early childhood is a time of rapid development (Donald and Finlay, 2023). The innate immune system develops significant competence over the first few months of life, with maturation accelerating in relation to

the heightened risk of severe disease in early infancy (Pieren *et al.*, 2022). By contrast, the adaptive immune system is not fully functional until the early years of life, with immune responses to pathogens influenced by the presence of maternal antibody and the diversity of exposures (Laupèze and Doherty, 2023). Such preparatory changes may be reflected in studies describing vaccination in infancy as a Tanner event training the immune system for subsequent responses (Laupèze *et al.*, 2021). These reviews summarize the immunological evidence that vaccination early in life may influence subsequent immune-system development and function, with a focus on the immune system's capability for protection beyond the classic pathways (Cinicola *et al.*, 2021).

7. Special Populations and Considerations

Two main groups of pediatric patients require special considerations regarding routine vaccination: those with chronic diseases or impairments of the immune system processes and those at increased risk of various infectious diseases such as preterm births (Langel et al., 2022). Chronic illness and especially chronic pulmonary, cardiac, or renal diseases reduces the availability of pathogen-specific protective antibodies, resulting in a higher risk of hospitalization and also of a reduced rate of vaccine antibody formation (Galván et al., 2025). These patients remain at risk for an extended period, leading to the idea of "prolonged asplenia" after splenectomy (Josyula et al., 2022). In these patients, delayed antibody formation is observed, and therefore booster doses should be administered 1-2 years earlier than routine patients (Grace et al., 2022).

Patients who are immunosuppressed through therapy or disease itself may not generate adequate responses to live vaccines (Alnaimat et al., 2023). For so-called immunosuppressed patients, immunization with live attenuated virus vaccines is usually contraindicated (Kamei, 2023). Infection with varicella virus can be serious in such patients, but active immunization in normal subjects can also pose a risk for the susceptible patient (Bemben and Berg, 2022). As a consequence of these observations, vaccination with the live attenuated vaccine has been restricted to healthy children and adults who are coming into close contact with an immunosuppressed child (Shoham et al., 2023). Furthermore, the occurrence of so-called secondary transmission in the immunosuppressed patient is restricted to the excretion of measles virus by the vaccinee in the first week after vaccination (Righi et al., 2021).

At a global scale, access to vaccinations as well as rates of delivery remain iniquitous (Clouston *et al.*, 2023). The high-risk returnees to formerly polioendemic areas and residents of these countries who are unvaccinated seem particularly susceptible to poliomyelitis, despite the fact that the current oral poliovaccine is given universally to children in many

parts of the world (Gayle and Childress, 2021). The same holds for all the diseases for which safe vaccines are available: measles, rubella and mumps; diphtheria; tetanus; whooping cough; hepatitis A; and hepatitis B (Gates *et al.*, 2021). The risk of acquiring these diseases is thus correspondingly increased in immunization camps for the detection of new cases, screening for contacts or newly diagnosed patients with infectious syphilis or any type of viral hepatitis, and so on (Jean-Jacques and Bauchner, 2021).

CONCLUSION

The effect on health and development of immune-related diseases during childhood and early infancy remains a global concern, and vaccination programs constitute an important part of public health strategies to limit infectious diseases in children (Besnier et al., 2021). Vaccination strategies for the prevention of infectious and non-infectious diseases are now available but should not only be guided by burden of disease studies and assessment of the protective role of vaccines against such diseases (Alanazi et al., 2024). Informed and appropriate use of the immunization services currently available could also lead to a sustainable decrease in the incidence, morbidity, and mortality associated with immune-related diseases of other etiologies (Ogugua et al., 2024). Pediatricians, family doctors, and all health care workers caring for immunized children should be aware of the impact vaccination has on subsequent immune response to nonvaccine-preventable infections other than those studied in post-marketing surveillance of vaccines (Excler et al., 2021).

Pediatric infectious diseases, and specifically vaccination programs, are crucial public health strategies in reducing the global burden of disease associated with these conditions (Alanazi et al., 2024). In addition to the main aim of preventing targeted diseases, vaccination has other, sometimes unexpected effects on general health, development, and the immune response to other infections (Peter, 2024). Nevertheless, even the best public health services cannot guarantee complete, sustained, and lasting vaccine coverage of childhood populations in every country a fact that jeopardizes the full achievement of herd immunity (Larson et al., 2022). Premature infants, those with chronic diseases, and patients receiving immunosuppressive treatment are at higher risk of severe complications from infections and may be at increased risk when vaccinated (Ogugua et al., 2024).

REFERENCES

 Abdulla, Faruq, et al., "Likelihood of infectious diseases due to lack of exclusive breastfeeding among infants in Bangladesh." PLoS One 17.2 (2022): e0263890

- Alanazi, Faiz Thani H., et al., "The impact of vaccinations on disease prevention: A comprehensive analysis of their role in enhancing global public health and reducing morbidity and mortality rates." International journal of health sciences 8.S1 (2024): 1885-1907.
- Al-Jabri, M., Rosero, C., and Saade, E. A. "Vaccinepreventable diseases in older adults." Infectious Disease Clinics, 2023. binasss.sa.cr
- Alnaimat, Fatima, et al., "Vaccination in the Era of Immunosuppression." Vaccines 11.9 (2023): 1446. mdpi.com
- Anaeigoudari, Akbar, et al., "severe acute respiratory syndrome coronavirus 2: The role of the main components of the innate immune system." Inflammation 44.6 (2021): 2151-2169. springer.com
- Baker, Rachel E., *et al.*, "Infectious disease in an era of global change." Nature reviews microbiology 20.4 (2022): 193-205.
- Baral, Bhagyashree, et al., "Infectious diseases and its global epidemiology." Nanostructured Drug Delivery Systems in Infectious Disease Treatment. Academic Press, 2024. 1-24.
- Bassat, Quique, et al., "Causes of death among infants and children in the child health and mortality prevention surveillance (CHAMPS) network." JAMA network open 6.7 (2023): e2322494e2322494.
- Bemben, Nina M., and Melody L. Berg. "Efficacy of inactivated vaccines in patients treated with immunosuppressive drug therapy." Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 42.4 (2022): 334-342. nih.gov
- Besnier, Elodie, et al., "Which public health interventions are effective in reducing morbidity, mortality and health inequalities from infectious diseases amongst children in low-and middleincome countries (LMICs): an umbrella review." PLoS One 16.6 (2021): e0251905.
- Blanchard, Ana C., and Valerie J. Waters.
 "Opportunistic pathogens in cystic fibrosis: epidemiology and pathogenesis of lung infection."
 Journal of the Pediatric Infectious Diseases Society
 11. Supplement_2 (2022): S3-S12
- Brodin, P. "Immune-microbe interactions early in life: A determinant of health and disease long term." Science, 2022.
- Brown, Alex, et al., "The unfinished agenda of communicable diseases among children and adolescents before the COVID-19 pandemic, 1990–2019: a systematic analysis of the Global Burden of Disease Study 2019." The Lancet 402.10398 (2023): 313-335.
- Brown, Alex, et al., "The unfinished agenda of communicable diseases among children and adolescents before the COVID-19 pandemic, 1990– 2019: a systematic analysis of the Global Burden of

- Disease Study 2019." The Lancet 402.10398 (2023): 313-335.
- Buonsenso, D., Di Gennaro, L., De Rose, C., Morello, R., D'Ilario, F., Zampino, G., Piazza, M., Boner, A. L., Iraci, C., O'Connell, S., Cohen, V. B., Esposito, S., Munblit, D., Reena, J., Sigfrid, L., & Valentini, P. (2022). Long-term outcomes of pediatric infections: from traditional infectious diseases to long Covid. Future microbiology, 17, 551–571. https://doi.org/10.2217/fmb-2022-0031
- Carter, Austin, et al., "Modeling the impact of vaccination for the immunization Agenda 2030:
 Deaths averted due to vaccination against 14 pathogens in 194 countries from 2021 to 2030."

 Vaccine 42 (2024): S28-S37.
- Cinicola, Bianca, *et al.*, "The protective role of maternal immunization in early life." Frontiers in pediatrics 9 (2021): 638871. frontiersin.org
- Clouston, S. A. P., Hanes, D. W., and Link, B. G.
 "Social inequalities and the early provision and
 dispersal of COVID-19 vaccinations in the United
 States: A population trends study." Vaccine, 2023.
 sciencedirect.com
- Doherty, Mark T., *et al.*, "Capturing the value of vaccination: impact of vaccine-preventable disease on hospitalization." Aging Clinical and Experimental Research 34.7 (2022): 1551-1561. springer.com
- Donald, K. and Finlay, B. B. "Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease." Nature Reviews Immunology, 2023. aaiito.it.
- Excler, J. L., Saville, M., Berkley, S., and Kim, J. H.
 "Vaccine development for emerging infectious diseases." Nature medicine, 2021. nature.com
- Galván, C., Durán, R., Matos, C., Indolfi, C., and Klain, A. "Recurrent Infections in Allergic Pediatric Patients: An Immune System Problem? A Narrative Review." Children, 2025. mdpi.com
- Gates, Allison, et al., "Health inequities related to vaccination: an evidence map of potentially influential factors and systematic review of interventions." Vaccine 39.29 (2021): 3825-3833. sciencedirect.com
- Gayle, H. D. and Childress, J. F. "Race, racism, and structural injustice: equitable allocation and distribution of vaccines for the COVID-19." The American Journal of Bioethics, 2021.
- Grace, P. S., Gunn, B. M., and Lu, L. L.
 "Engineering the supernatural: monoclonal
 antibodies for challenging infectious diseases."
 Current Opinion in Biotechnology, 2022. nih.gov
- Hall, E. and for Disease Control and Prevention, C.
 "Epidemiology and prevention of vaccine-preventable diseases." 2021. merle-arbeitsmedizin.de
- Hamson, Elizabeth, *et al.*, "Impact of pandemics and disruptions to vaccination on infectious diseases

- epidemiology past and present." Human Vaccines & Immunotherapeutics 19.2 (2023): 2219577.
- Hong, J. Y. and Medzhitov, R. "On developmental programming of the immune system." Trends in Immunology, 2023.
- Jansen, Kathrin U., et al., "The impact of human vaccines on bacterial antimicrobial resistance. A review." Environmental chemistry letters 19.6 (2021): 4031-4062. springer.com
- Jean-Jacques, M. and Bauchner, H. "Vaccine distribution equity left behind?" Jama, 2021. jamanetwork.com
- Josyula, Srirama, et al., "Pathogen-specific humoral immunity and infections in B cell maturation antigen-directed chimeric antigen receptor T cell therapy recipients with multiple myeloma." Transplantation and cellular therapy 28.6 (2022): 304-e1. sciencedirect.com
- Kamei, K. "Live attenuated vaccines in patients receiving immunosuppressive agents." Pediatric Nephrology, 2023. springer.com
- Khan, Durray Shahwar A., et al., "Interventions for high-burden infectious diseases in children and adolescents: a meta-analysis." Pediatrics 149.Supplement 6 (2022).
- Kiboneka, A. "Principals of innate and adaptive immunity. Immunity to microbes & fundamental concepts in immunology." World J. Adv. Res. Rev, 2021.
- Kolobova, Irina, et al., "Burden of vaccinepreventable diseases among at-risk adult populations in the US." Human vaccines & immunotherapeutics 18.5 (2022): 2054602. tandfonline.com
- Langel, S. N., Blasi, M., and Permar, S. R. "Maternal immune protection against infectious diseases." Cell Host & Microbe, 2022. cell.com
- Larson, Anna, *et al.*, "Addressing an urgent global public health need: strategies to recover routine vaccination during the COVID-19 pandemic." Human vaccines & immunotherapeutics 18.1 (2022): 1975453. tandfonline.com
- Laupèze, B. and Doherty, T. M. "Maintaining a 'fit'immune system: the role of vaccines." Expert Review of Vaccines, 2023. tandfonline.com
- Laupèze, B., Del Giudice, G., Doherty, M. T., and Van der Most, R. "Vaccination as a preventative measure contributing to immune fitness." npj Vaccines, 2021. nature.com
- Liston, A., Humblet-Baron, S., Duffy, D., and Goris, A. "Human immune diversity: from evolution to modernity." Nature immunology, 2021. nature.com
- Long, S. S., Prober, C. G., Fischer, M., and Kimberlin, D. "Principles and practice of pediatric infectious diseases E-Book." 2022. booksdo.com
- Majstorovic, Martina, and Darien Weatherspoon.
 "Vaccines, Vaccinations, and the Re-emergence of and Vaccine-Preventable Diseases." Infection Control in the Dental Office in the Era of COVID-

- 19. Cham: Springer Nature Switzerland, 2024. 109-
- Manetu, W. M., M'masi, S., and Recha, C. W.
 "Diarrhea disease among children under 5 years of age: a global systematic review." 2021.
- Melvin, Ann J., et al., "Neonatal herpes simplex virus infection: epidemiology and outcomes in the modern era." Journal of the Pediatric Infectious Diseases Society 11.3 (2022): 94-101.
- Metcalf, C. J. E., Graham, A. L., Yates, A. J., and Cummings, D. A. T. "Convergence and divergence of individual immune responses over the life course." Science, 2025
- Micoli, Francesca, et al., "The role of vaccines in combatting antimicrobial resistance." Nature Reviews Microbiology 19.5 (2021): 287-302. nature.com
- Mohammed, Ibrahim, et al., "The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: a systematic review." Human vaccines & immunotherapeutics 18.1 (2022): 2027160. tandfonline.com
- Molofsky, A. B. and Locksley, R. M. "The ins and outs of innate and adaptive type 2 immunity." Immunity, 2023. cell.com
- Moraes-Pinto, M. I., Suano-Souza, F., and Aranda, C. S. "Immune system: development and acquisition of immunological competence." Jornal de Pediatria, 2021. scielo.br
- Morales, Fátima, et al., "Effects of malnutrition on the immune system and infection and the role of nutritional strategies regarding improvements in children's health status: A literature review." Nutrients 16.1 (2023): 1. mdpi.com
- Ogugua, Jane Osareme, et al., "Ethics and strategy in vaccination: A review of public health policies and practices." International Journal of Science and Research Archive 11.1 (2024): 883-895. researchgate.net
- Paul, J. "Introduction to infectious diseases."
 Disease Causing Microbes, 2024.
- Peter, J. "The Impact of Vaccination Campaigns on Public Health a Comprehensive Analysis." Health Science Journal, 2024. [HTML]
- Pieren, D. K. J., Boer, M. C., and de Wit, J. "The adaptive immune system in early life: The shift makes it count." Frontiers in immunology, 2022. frontiersin.org
- Righi, Elda, et al., "A review of vaccinations in adult patients with secondary immunodeficiency."
 Infectious Diseases and Therapy 10.2 (2021): 637-661. springer.com
- Romandini, Alessandra, et al., "Antibiotic resistance in pediatric infections: global emerging threats, predicting the near future." Antibiotics 10.4 (2021): 393

- Rus, M. and Groselj, U. "Ethics of vaccination in childhood A framework based on the four principles of biomedical ethics." Vaccines, 2021. mdpi.com
- Semmes, Eleanor C., *et al.*, "Understanding early-life adaptive immunity to guide interventions for pediatric health." Frontiers in immunology 11 (2021): 595297. frontiersin.org
- Shoham, Shmuel, *et al.*, "Vaccines and therapeutics for immunocompromised patients with COVID-19." EClinicalMedicine 59 (2023). thelancet.com
- Sinumvayo, Jean Paul, *et al.*, "Vaccination and vaccine-preventable diseases in Africa." Scientific African 24 (2024): e02199. sciencedirect.com
- Strong, Kathleen L., *et al.*, "Patterns and trends in causes of child and adolescent mortality 2000–2016: setting the scene for child health redesign." BMJ global health 6.3 (2021): e004760.
- Talbird, Sandra E., et al., "Impact of routine childhood immunization in reducing vaccinepreventable diseases in the United States." Pediatrics 150.3 (2022): e2021056013. aap.org
- Urlacher, S. S. "The energetics of childhood: Current knowledge and insights into human

- variation, evolution, and health." American Journal of Biological Anthropology, 2023. wiley.com
- Wald, E. R., Schmit, K. M., & Gusland, D. Y. (2021). A Pediatric Infectious Disease Perspective on COVID-19. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 72(9), 1660–1666. https://doi.org/10.1093/cid/ciaa1095
- Wang, Ruyuan, *et al.*, "The interaction of innate immune and adaptive immune system." MedComm 5.10 (2024): e714. wiley.com
- Wang, X., Li, Y., Mei, X., Bushe, E., Campbell, H., & Nair, H. (2021). Global hospital admissions and in-hospital mortality associated with all-cause and virus-specific acute lower respiratory infections in children and adolescents aged 5-19 years between 1995 and 2019: a systematic review and modelling study. BMJ global health, 6(7), e006014. https://doi.org/10.1136/bmjgh-2021-006014
- Weng, J., Couture, C., and Girard, S. "Innate and adaptive immune systems in physiological and pathological pregnancy." Biology, 2023.