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INTRODUCTION

Let X be a nonempty set and let d : X xX — [0,) be a functiion satisfying the following conditions :
d(x,y) d(y,x)

() [£Mdt= [£@M)dt=0 = x=y

d(x,y) d(x,z) d(y,2)

() [e@dt< [EMdt+ [E@)dt=,forallxy.z ex.

d(x,x)
Then d is called a dislocated quasi-metric on X. If d satisfies jf(t)dt = 0, then it is called a quasi-metric

(o]
on X. If d satisfies d(x, y) = d(y, x), then it is called a dislocated metric.

Definition 1.1 Let X be a nonempty set and p : X x X — [0,%) be a function. We say p is a
partial metric on X if it satisfies the following axioms:

(i) x=y if and only if p(x, X) = p(x, y) = p(y,y), (i) p(x, x) <
p(x, y)

(iii) p(x, y) = p(y, X)

(iv) p(x, z) <p(x, y) +p(y,z) —p(y,y)
for all x,y,z €X

Observe that any partial metric is a dislocated metric. Ultra metric d on X is a metric on X
d(x,y) d(x,z) d(z,y)
with condition jf(t)dt < Ié(t)dt, Ii(t)dt. The study of partial metric spaces and generalized
o] (o] o

ultra metric spaces have application in theoretical computer science[2, 3]. The notion of the dislocated
topologies is useful in the context of logic programming. Recently, Zeyada et al.[1] have established a fixed point
theorem in a complete dislocated quasi-metric (dg-metric) space, as stated in the following lemma and
theorem.

Lemma 1.1 Let (X,d) be a dg-metric space. If f:X — X is a contraction function, then
{(fn(xo))} is a cauchy sequence for each x, €X.
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Theorem 1.1 Let (X, d) be a complete dg-metric space and let ¥ : X — X be a continuous contraction
function. Then f has a unique fixed point.

PRELIMINARIES

Definition2.1 A sequence {Xn}in a dg-metric space (dislocated quasi-metric space) (X, d)
is called Cauchy if for givene > 0,7n, €N such that #m,n >n,, implies
d(Xn,Xy) d(Xp,%,)

[edi< e or  [Edt< €

mim{d (X, Xm ) A (X Xn )}
ie. [edt <e

(o]
d (X, Xm) d (X Xn)

In the above definition if we replace If(t)dt< € or Jf(t)dt< €
0 0

max{d (Xq X ).d (X, X0 )}
By j E(t)dt <e,
0
the sequence {x,} is called “bi” Cauchy.Note that every bi Cauchy sequence is Cauchy.

Definition 2.2 A sequence {Xn } dislocated quasi-converges to X if

d(x,x,) d(x,,x )

lim [ &()dt = lim jg(t)dt =0
(o] 0
In this case x is called a dg-limit of {xn }.

Proposition 2.1 . Every convergent sequence in a dg-metric space is ‘bi 'Cauchy.

Proof. Let {xn }be a convergent sequence in a dg-metric space (X,d) and x €X be its dg-limit. That is,

d(x,x,) d(Xy.Xx )

lim J.g(t)dt:r!m [emdt=o0

d(x ,x,) d(Xy,Xm)
J-f(t)dt < e/2. Now ng = max{ n;; n, } € N is such that m, n > nq =) Idj(t)dt <e-
(0]

0
d(x ,Xm)

Then ¢>0; I ny;n, € Nsuch that n >n; =) If(t)dt <e¢Randn>n; =)
0

d (X Xm) d (X %) d (X Xm) d(x .x,) d(x Xp)

[edt+ [e@dt<enren-cand  [E(t)dts j E(t)dt j EQAt <2+ e =c

Hence { x, } is bi Cauchy.
Converse of proposition 2.1 may not be true. Proof of the following lemma is obvious

Lemma 2.1 . Every subsequence of dg-convergent sequence to a point xq is dg-convergent to Xo.

Definition 2.3 A dg-metric space (X; d) is called complete if every Cauchy
sequence in it is a dg-convergent.
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Definition 2.4 . Let (X,d1) and (Y, d2) be dg-metric spaces and let f : X — Y be afunction. Then f is
continuous if for each sequence {xn } which is d1g- convergent to x, in X, the sequence {f(xn) } is d2g-
convergent to f(x,) in Y.

MAIN RESULTS

Theorem 3.1 Let (X, d) be a complete dg-metric space and suppose there exist non negative constants a1, a2, a3
, 04,05 Wwith a1+a2+a3+2(a4+05) <1. Let ¥ : X — X be a continuous mapping satisfying

d(fx, fy) d(x,y) d(x, fx) d(y, fy) d(x, fx)+d(y, fy) d(x, fy)+d(y, fx)
E)dt <o j Et)dt+a, j Et)dt + a, j Et)dt+a, j Et)dt + o Icf(t)dt
0 0 0 0 0 0

for all x, y €¢X. Then f has a unique fixed point.
Proof: Let {xn }be a sequence in X, defined as follows. Let x, X, f(x,) = x,, F(x;) =

Xy, F(X,) =X

N1ttt

d(Xn,Xn+1) d(fXn-1, fXn)
[edt= eyt
0 0
d(Xn-1,Xn) d(Xn-1, fXn-1) d(Xn, fXn) d(Xn-1, fXn-1)+d (Xn, fXn)

<a, j E(t)dt + o, j Et)dt + o, j E(t)dt + o, j E(t)dt
d(Xn-1, fXn)+d (Xn, fXn-1)

o, [eat

0
d(Xn-1,Xn) d(Xn-1,Xn) d(Xn,Xn+1) d(Xn-1,Xn)+d (Xn,Xn+1)

—a, Izj(t)dt+ a, jg(t)dt+a3 jg(t)dt+a4 jg(t)dt
d(Xn-1,Xn+1)+d (Xn,Xn)

a, [e@dt

d(Xn-1,Xn) d(Xn,Xn+1) d(Xn-1,Xn)+d (Xn,Xn+1)
(o +a,+a,)  [EOdt+ (o +a,)  [E@dt+ a [et
0 0 0
d(Xn-1,Xn) d(Xn,Xn+1)

=(oy v v, rag)  [EOdE (@t rag) (£t

Therefore
o +a,+a,+a;
d(Xn,Xn+1) d(Xn—L,Xn) A=
[emdt<a [t where l-ay-a,-a;
0 0
Similly
d(Xn-1,Xn) d(Xn-2,Xn-1)
j E(t)dt <A j E(t)dt
d(Xn ,OXn +1) d (XO(,)Xl)

j E(t)dt<A" j E(t)dt

Since 0 <A < 1, so for n — oo, AN — 0 we have d(xn, xn+1) — 0. Hence {xn }is a Cauchy sequence in the
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complete dislocated quasi-metric space X, so there is a point t9 X, such that xn — tg. Since f is

continuous,
f(ty) = limf(x,) = limx,, = t,.

Thus f(t,) = t,, so T has a fixed point.

Uniqueness: If x €X is a fixed point of f, then by (3.1)

d(x,x) d(fx, fx)

j E(t)dt= j E(t)dt

d(x,x)
<[y +a, + g +2a, + )] [E@)t
0

which is true only if d(x, x) = 0,since 0 <a1 +02 +0a3 +2(a4+05) < 0and d(x, X) =0. Thus d(x, x) = 0 for a

fixed-point x of f.
Let x, y be fixed point of f. Then by (3.1)

d(xy) d(fxfy)
[ewdt= [£tat
0 0
d(x,y) d(x,x) d(y,y) d(x,x)+d(y.y) d(x,y)+d(y.x)
<oy [é)dt+a, [EMdt+a, [EMdt+a, [é)dt+as [t
0 0 0 0 0
d(xy) d(x,y)

j EM)dt < (a, +2a;) j E(t)dt

and from this it follows that d(x, y) = 0, since d(x,y) >0,
0 <(a1 +2 a5)< 1. Similarly d(y, x) = 0. Hence x =y, i.e. uniqueness of the fixed point follows.

Note: If a2 =0 = a3 in (3.1), then f becomes a contraction map and this shows that theorem 3.1 is a

generalization of Theorem 1.1. Thus Theorem 3.1 is generalization of Banach contraction principle.

Theorem 3.2
Let (X, d) be a complete dg-metric space and let f: X — X be a continu- ous mapping satisfying
d(fx, fy) max{d (x,y),d (x, ¥x).d (y, fy)} max{d (x, fx)+d (y, fy).d (x, fy)+d(y, fx),d (x,y)}
E)dt<a [éadt+p [t
0 0 0

for all x,y €X. If 0<a, 8 < lsuchthat a+2 3 <1 then f has a unique fixed point.
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Proof: Let{xn}be a sequence in X,defined as follows. Let x, eX,f(x,)=x,,f(x;)=
Xy F(X,)=X

n+1re

d(Xn,Xn+1) d(fXn-1, fXn)

[edt= et

max{d (Xn-1,Xn),d (Xn-1, fXn-1),d (Xn, fXn)}
<a J‘g(t)dt 4+ max{d(fXn-1,Xn-1)+d ( fXn,Xn),d (Xn-1, fXn)+d (Xn, fXn-1),d (Xn-1,Xn)}

&(t)dt

mg;g#g %H 13%[1 *r?ﬁl d(Xn, Xn*ljrg({d(Xn—l Wi}‘é&rﬁiﬂj}“xnﬂ Xn),d (Xn-1,Xn+1)+d (Xn,Xn),d (Xn-1, Xn)}
=g j g(gﬁéﬁt)dh Bt P j E(t)dt I &(t)dt
0
Case-1
d(Xn-1,Xn) max{d (Xn-1,Xn+1),d (Xn-1,Xn)}
When j E(t)dt = j E(t)dt
0 0
d(Xn,Xn+1) d(Xn-1,Xn)
[e@dt=(a+p) et
0 0
d(Xn-1,Xn)

=1 J.f(t)dt Where A=a+p
d(Xn-1,Xn) d(Xn-2,Xn-1)

similly jg(t)dts}t jg(t)dt

d(Xn, Xn+1) d(Xn-2,Xn-1)

[ewdt<2z2  [z@at
0 0
d(Xn,Xn+1) d(Xy,Xo)

Thus  [E(dt=A" ()t

Since 0<y <1,as n—ow, ¥ N_,c0. Hence {xn} isa dg-cauchy sequence in X. Thus
{xn} dislocated quasi-converges to some t,.Since T is continuous, we have
f(ty)=limf(x )=limx_,,= t,

Thus f(t))=t, that is f has a fixed point to.

Case-2
max{d (Xn-1,Xn+1),d (Xn-1,Xn)} d(Xn-1,Xn+1)
When fewa = [yt
0 0
d(Xn-1,Xn)+d (Xn, Xn+1)
< [e@t
0
d(Xn, Xn+1) d(Xn-1,Xn) d(Xn-1,Xn)+d (Xn,Xn+1)
[edt=a  [e)dt+p [et
0 0 0
d(Xn,Xn+1) d(Xn-1,Xn)

-4 [éMdi<(a+p) [t
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d(Xn, Xn+1) d(Xn-1,Xn)

a+pf
{ £0dt=C ) J £(t)dt
d(Xn, Xn+1) d(Xn-1,Xn)

[eodt<s [emdt  whee 5=22<

Uniqueness: Let x be a fixed point of f, then by (3.2)
d(x,x) d(fx,, fx) max d (X,X)

[eat = [emdi<z [
0 0 0 Where A1 =a+2f
d(x,x) d(x,x)

ie.  [édt=A [£tydt

which gives d(x; x) = 0, since 0 <y <1 and d(x; x) >0. Thus
d(x; x) = 0 if x is a fixed point of f.
Let x,; y ¢ X be fixed points of f. That is ,fx= x; fy=y. Then by (3.2),

d(x,y) d(fx, fy) max{d (x,y),d (x,x),d (y,y) max{d (x,x)+d (y,y),d (x,y)+d (y,x).d (x,y)}
j fnydt = [Edt<a [emdt +p [t
0 0 0 0
d(x,y)

= (a+2p) [£(@M)dt
0
which is true only if d(x; y) =0 since d(x; x) =0 =d(y; y); 0<y <L.
Similarly d(y; x) = 0 and hence x = y.
Thus a fixed point of f is unique

Note: If d is a partial metric on X , then (X; d) becomes a dg-metric space. Hence we consider (X; d) in Theorem 3.1 and
3.2 as a partial metric space, then the conclusion follows.

Theorem 3.3 Let (X; d) be a complete partial metric space and let f :X —X be a continuous mapping satisfying

d(fx,, fy) max{d (x,y),d (x, fx),d (y, fy).d (y, %)} max{d (fx,x)+d (fy,y).d (x, fy)+d (y, &).d (x,y)}

[edt<a [emdt  +p [eat
0 0 0
forall x; y e X. If 0<a, [f <1 such that a+2 f <1 then f has a unique fixed point.

It can be proved easily.
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