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INTRODUCTION 

To find the periodic solutions for nonlinear evolution equations, Porubov et.al introduced Weirestrass elliptic 

function expansion method [1-3]. Liu Shi-Kuo et.al introduced Jacobi elliptic function expansion method [4]. Jacobi 

elliptic function solutions given in these papers all are polynomial form, fractional form Jacobi elliptic function solutions 

have not been given. In the paper, we will give fractional form Jacobi elliptic function solutions the second order 

Benjamin Ono equation. Some solutions are new. 

 

The solutions of the second order Benjamin Ono equation 

 We consider the second order Benjamin Ono equation 
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),(
1
uu    ctx 1                                             (2) 

Substituting (2) into Eq. (1) yields 
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Integrating (3) and letting the integral constant be zero yield 

02
11111 11

2   uquupuc .                                        (4) 

Integrating Eq.(4) gives 
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where 1
c  is integral constant. Integrating (5), we obtain 
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where 1
c  and 2

c  are integral constants. Letting 
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Equation (6) becomes 
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where  
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Denotes )(wF  the right polynomial of (9),  that is, 
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The discrimination of F (w) is 
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If 0 , then equation (6) can be solved with elementary functions, see [5] in detail. If 0 , then equation (6) can 

be solved with Jacobi elliptic functions. We obtain the following results 

 

Case 2.1：   0wF  has three distinct roots   ，  Respectively, as   w , the solutions of equation 

(1) are 
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As w , the solutions of equation (1) are 
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Case 2.2：   0wF has only one real root.  Letting  

    qpwwwwF  2 ,                         (15) 

 

where 042  qp . As w ， respectively,  he solutions of equation (1) are 
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They are new Jacobi elliptic function solutions.   

Other nonlinear evolution equations like mKdv equation, nonlinear Klein-Gordon equation, Sine-Gordon 

equation, Boussinesq equation and symmetry long wave equation and so on, can be dealt with similarly. 
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