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Abstract: Under the travelling wave transformation, some nonlinear partial differential equations such as the fifth order 

Caudrey-Dodd-Gibbon equation are transformed to ordinary differential equation. Then Using trial equation method and 

combing complete discrimination system for polynomial, the classifications of all single traveling wave solution to this 

equation are obtained. 
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INTRODUCTION 
  Many problems in natural and engineering sciences are modeled by partial differential equations(PDE).To find 

solutions of PDE is a very important problem. Many mathematicians and physicists work in the field, and they have 

developed many methods for many special equations. Particularly, by algebrac expansion method, many exact solutions 

of many nonlinear equations have been obtained. Recently, Professor Liu proposed a powerful method named trial 

equation method[1-3] for finding exact solutions to nonlinear differential equations.  

 

The Caudrey-Dodd-Gibbon equation’s physical understanding was illustrated in[4],and its solitary solutions have been 

studied by many authors[5-10].It’s worth mentioning that Wazwaz derived explicit travelling wave solutions using the 

tank method in2006 and multiple-soliton solutions using Hirota’s direct method combined with the simplified Hereman 

method in 2008 for the above equation. In this paper, we mainly use Liu’s trial equation method and the theory of 

complete discrimination system for polynomial[11-15] to solve exact solutions of the fifth order Caudrey-Dodd-Gibbon 

equation.  

 

DESCRIPTION OF TRIAL EQUATION METHOD  
  The objective of this section is to outline the use of trial equation method for solving a nonlinear PDE. Suppose we 

have a nonlinear PDE for ( )u x t  ,in the form  

 ( ) 0x t xx tt xtP u u u u u u        (1) 

where P  is a polynomial, which includes nonlinear terms and the highest order derivatives and so on.  

Step 1. Taking the wave transformation 1 1( )u u kx t      , reduces Eq.(1) to the ordinary differential equation 

(ODE).  

 
2 2( ) 0M u ku u k u u k u              (2) 

Step 2. Take trial equation method  

 0 1( ) m

mu F u a a u a u        (3) 

Integrating the Equation (3) with respect to 1  once, we get  

 
2 1 2

1 0

2
( ) ( ) 2

1

mma
u H u u a u a u d

m

      


  (4) 

where m, ia  and integration constant d  are to be determined. Substituting Eqs. (3) (4)  and other derivative terms into 

Eq.(2) yields a polynomial ( )G u  of u. According to the balance principle we can determine the value of m. Setting the 
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coefficients of ( )G u  to zero, we get a system of algebraic equations. Solving this system, we can determine values of 

1, ,o ma a a   and integration constant.  

Step 3. Rewrite Eq.(4) by the integral form  

 0( )
( )

du

H u
      (5) 

According to the complete discrimination system of the polynomial, we classify the roots of ( )H u  and solve the 

integral equation (5). Thus we obtain the exact solutions to Eq.(1).  

 

APPLICATION OF TRIAL EQUATION METHOD 
  The fifth order Caudrey-Dodd-Gibbon equation reads as  

 
230 30 180 0t x xx xxx x xxxxxu u u uu u u u       (6) 

Taking the traveling wave transformation 
1( )u u   and 1 kx t   , we can obtain the corresponding reduced ODE.  

 
3 3 2 530 30 180 0u k u u k uu ku u k u             (7) 

Integrating Eq.(7) once with respect to 1  and setting the integration constant as zero yields  

 
3 3 530 60 0u k uu ku k u        (8) 

We take the trial equation as follows  

 
0 1

m

mu a a u a u       (9) 

According to the trial equation method of rank homogeneous equation, balancing u (or uu ) with 
3u  gets 2m  , so 

Eq.(9) has the following specific form  

 
2

0 1 2u a a u a u      (10) 

Integrating Eq.(10) with respect to 1  once, we yield  

 
2 3 2

2 1 0

2
( ) 2

3
u a u a u a u d       (11) 

where values of 1 2oa a a   and the integration constant d  are to be determined latter. By Eqs.(10) and (11),we can 

derive the following formula  

 
2 3 2 2

2 1 2 0 2 1 0 1 2

10
5 (6 ) 2

3
u a u a a u a a a u a a a d         (12) 

Substituting Eqs.(10) and (12) into Eq.(8), we have  

 
3 2

3 2 1 0 0r u r u ru r      (13) 

where  

 
5 5

0 0 1 22r k a a k a d    (14) 

 
3 5 2

1 0 0 2 130 (6 )r k a k a a a      (15) 

 
3 5

2 1 1 230 5r k a k a a    (16) 

 
3 5 2

3 2 2

10
30 60

3
r k a k k a     (17) 

Let the coefficient 0( 0 1 2 3)ir i      be zero, we will yield nonlinear algebraic equations. Solving the equations, we 

will determine the values of 0 1 2a a a d   . We get two groups of solution to the equations as follows  

 
0 1 23 2

3
0 0

12
a a a d

k k


          (18) 

 

5 2 5 2

1 1 1
0 1 1 23 2

( )6

6 72

k a k a a
a a a a d

k k k

  
         (19) 

Where 1a  is an arbitrary constant.   

When the above condition (18) or (19) is satisfied, we use the complete discrimination system for the third order 

polynomial and have the following solving process.   
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Let  

 
1 1 2 1
3 3 3 3

2 2 1 2 1 2 1 0 2 0

2 2 2 2
( ) ( ) ( ) 2 ( )
3 3 3 3

v a u a d a a d a a d d 
 

           (20) 

Then Eq.(11) becomes  

 
2 3 2

2 1 0( )v v d v d v d       (21) 

Where v  is a function of  . The integral form of Eq.(21) is  

 
0

3 2

2 1 0

( )
dv

v d v d v d
    

  
  (22) 

Denote  

 
3 2

2 1 0( )F v v d v d v d      (23) 

 

3 2
2 2 31 32 2

0 1 2 1 1

2
27( ) 4( )

27 3 3

d dd d
d d d D d            (24) 

According to the complete discrimination system, we give the corresponding single traveling wave solutions to Eq.(6).  

Case1. 10 0 ( ) 0D F v       has a double real root and a simple real root. Then we have  

 
2

1 2 1 2( ) ( ) ( )F v v v          (25) 

When 2v  , the corresponding solutions are  

 
1 1
3 31 22

1 2 1 2 2 0 2 1 2

2 2
( ) {( ) tanh [ ( ) ( )] } ( )
3 2 3

u a a kx t
 

      
 

         (26) 

 
1 1
3 31 22

2 2 1 2 2 0 2 1 2

2 2
( ) {( )coth [ ( ) ( )] } ( )
3 2 3

u a a kx t
 

      
 

         (27) 

    
1 1
3 31 22

3 2 1 2 2 0 1 1 2

2 2
( ) {( )sec [ ( ) ( )] } ( )
3 2 3

u a a kx t
 

      
  

            (28) 

Case2. 10 0 ( ) 0D F v       has a triple root. Then we have  

 
3( ) ( )F v v     (29) 

The corresponding solution is  

 
2
3 2

4 2 0

2
4( ) ( )

3
u a kx t  

       (30) 

Case 3. 10 0 ( ) 0D F v       has three different real roots. Then we have  

 1 2 3 1 2 3( ) ( )( )( )F v v v v              (31) 

When 1 2v   , we take the transformation as follows  

 
2

1 2 1( )v sin        (32) 

According to the Eq.(19), we have  

 
0

2 2
3 1

2
( )

( ) 1

dv d

F v m sin


 

  
    

 
   (33) 

Where 2 1

3 1

2m
 

 




 . On the basis of Eq.(30) and the definition of the Jacobi elliptic sine function, we have  

 
3 12

1 2 1 1 0( )sn ( )
2

v m
 

    
 

      
 
 

 (34) 

The corresponding solutions is  

 
1 1
3 33 12

5 2 1 2 1 2 0

2 2
( ) ( )sn ( ) ( )
3 2 3

u a a kx t m
 

    

  

        
    

 (35) 
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When 3v  , we take the transformation as follows  

 

2

2 3

2

sin

cos
v

  



 
   (36) 

The corresponding solutions is  

 
 

 

1
3 1 3

1
3

1
3 1 3

2 2
3 2 2 02 3

6 2
2 2

2 02 3

sn ( ) ( )2
( )
3 cn ( ) ( )

a kx t m
u a

a kx t m

 

 

   

 







    
  
 

    

 (37) 

where 2 1

3 1

2m
 

 




 .  

Case4. 0 ( ) 0F v     has only a real root. Then we have  

 
2 2( ) ( )( ) 4 0F v v v pv q p q         (38) 

When 1v  , we take the transformation as follows  

 
2 2tan

2
v p q


        (39) 

According to the Eq.(19), we have  

 
1
4

0 22 2 2

1

( )( )( ) 1

dv d

p qv v pv q m sin


 

  
   

    
   (40) 

where  2

2

2 1
2

1
p

p q
m



 



 
  . On the basis of Eq.(37) and the definition of the Jacobi elliptic cosine function, we have  

 

 
1
4

2

2

2

1 0

2

1 cn ( ) ( )

p q
v p q

p q m

 
  

   

 
     

    
 (41) 

The corresponding solutions is  

 
1
3

11
34

2

2

7 2
2 2

2 03

22
( )
3 1 cn ( ) ( ) ( )

p q
u a p q

p q a kx t m

 
  

   

 
 
 
 
 
 
  

 
     

     
   (42) 

In Eqs.(26)(27)(28)(30)(35)(37) and (42), the integration constant 0  has been rewritten, but we still use it. The solutions 

( 1 7)iu i     are all possible exact traveling wave solutions to Eq.(6). We can see it is easy to write the corresponding 

solutions to the fifth order Caudrey-Dodd-Gibbon equation.  

 

CONCLUSION 
Trial equation method is a systematic method to solve nonlinear differential equations. The advantage of this method is 

that we can deal with nonlinear equations with linear methods. This method has the characteristics of simple steps and 

clear effectivity. Based on the idea of the trial equation method and the aid of the computerized symbolic computation, 

some exact traveling wave solutions to the fifth order Caudrey-Dodd-Gibbon equation have been obtained.With the same 

method, some of other equations can be dealt with.  
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