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Abstract: Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In 

this paper, the Kadomtsov-Petviashvili-Benjamin-Bona-Mahony equation is reduced to an ordinary differential equation 

under the travelling wave transformation. Trial equation method and the theory of complete discrimination system for 

polynomial are used to establish exact solutions of the equation. 
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INTRODUCTION 
  The nonlinear evolution equations(NLEEs) are widely used to describe physical phenomena in various fields of 

sciences, especially in fluid mechanics, solid state physits, plasma physics, plasma waves, biology and so on. It is 

significant to obtain their exact solutions. During the past few decades, various methods have been developed by 

researchers to find explicit solutions for the NLEEs.  

 

The purpose of this article is to study the traveling wave solutions to the (2+1)-dimensional Kadomtsov-

Petviashivilli-Benjamin-Bona-Mahony (KP-BBM) equation by Liu’s trial equation method[1-3] and the complete 

discrimination system for polynomial[4-7].The equation is given by  

 
2( ( ) ) 0t x x xxt x yyu u u u u         (1) 

Here, in Eq(1)    and   are real valued constants.  

 

The solutions of Eq(1) have been studied in various aspects. For example, Abdou [8] used the extended mapping 

method with symbolic computation to obtain some periodic solutions, solitary wave solution, and triangular wave 

solution of this equation, Wazwaz [9, 10] used the sine-cosine method, the tanh method and the extended tanh method for 

finding solitonary solutions of it and so on.  

 

DESCRIPTION OF TRIAL EQUATION METHOD  
  The objective of this section is to outline the use of trial equation method for solving a nonlinear partial differential 

equation (PDE) .Suppose we have a nonlinear PDE for ( )u x y t  , in the form  

 ( ) 0x y t xx yy tt xtP u u u u u u u u          (2) 

where P  is a polynomial, which includes nonlinear terms and the highest order derivatives and so on.  

Step 1. Taking the wave transformation 1 1 1 2( )u u k x k y t        ,reduces Eq. (2) to the ordinary differential 

equation (ODE).  

 
2 2( ) 0M u ku u k u u k u              (3) 

Step 2. Take trial equation method  

 0 1( ) m

mu F u a a u a u        (4) 

Integrating the Equation (4) with respect to 1  once, we get  
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1 0
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( ) ( ) 2
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u H u u a u a u d

m

      


  (5) 

where m , ia  and integration constant d  are to be determined. Substituting Eqs. (4) (5)  and other derivative terms into 

Eq.(3) yields a polynomial ( )G u  of u. According to the balance principle we can determine the value of m. Setting the 

coefficients of ( )G u  to zero, we get a system of algebraic equations. Solving this system, we can determine values of 

1, ,o ma a a   and integration constant .  

Step 3. Rewrite Eq.(5) by the integral form  

 0( )
( )

du

H u
      (6) 

According to the complete discrimination system of the polynomial, we classify the roots of ( )H u  and solve 

the integral equation (6). Thus we obtain the exact traveling wave solutions to Eq.(2).  

 

APPLICATION OF TRIAL EQUATION METHOD 

Taking the traveling wave transformation 1( )u u   and 1 1 2k x k y t    , we can obtain the corresponding 

reduced ODE of Eq(1).  

 
2 2 2 2 2 3

1 1 2 1 1 1( ) 2 ( ) 2 0k k k u k u k uu k u                (7) 

we take the trial equation as follows  

 
0 1

m

mu a a u a u       (8) 

According to the trial equation method of rank homogeneous equation, balancing u  with uu (or 
2( )u ) gets 2m  , 

so Eq.(8) has the following specific form  

 
2

0 1 2u a a u a u      (9) 

Integrating Eq.(9) with respect to 1  once, we yield  

 
2 3 2

2 1 0

2
( ) 2

3
u a u a u a u d       (10) 

where values of 1 2,oa a a  and the integration constant d  are to be determined latter. By Eq.(9) and Eq.(10),we derive 

the following formula  

 
2 3 2 2

2 1 2 0 2 1 0 1 2

10
5 (6 ) 2

3
u a u a a u a a a u a a a d         (11) 

Substituting Eqs.(9),(10) and (11) into Eq.(7),we have  

 
3 2

3 2 1 0 0h u h u hu h      (12) 

where  

 
2 2 2 3

0 1 1 2 0 1 1 0 1 2( ) 2 ( 2 )h k k k a k d k a a a d            (13) 

 
2 2 2 3 2

1 1 1 2 1 1 0 1 1 0 2( ) 6 ( 6 )h k k k a k a k a a a            (14) 

 
2 2 2 3

2 1 1 2 2 1 1 1 1 2( ) 4 5h k k k a k a k a a           (15) 

 
2 3 2

3 1 2 1 2

10 10

3 3
h k a k a       (16) 

Let the coefficient 0( 0 1 2 3)ih i      be zero, we will yield nonlinear algebraic equations. Solving the equations, we 

will determine the values of 0 1 2a a a d   .We get 
2 2
1 1 2

3
11

1 2 0

k k k

kk
a a a

  
  

 
      and d are two arbitrary constants. 

When the above conditions are satisfied, we use the complete discrimination system for the third order polynomial and 

have the following solving process.   

Let  

 
1 1 2 1
3 3 3 3

2 2 1 2 1 2 1 0 2 0

2 2 2 2
( ) ( ) ( ) 2 ( )
3 3 3 3

v a u a d a a d a a d d 
 

           (17) 

Then Eq.(10) becomes  
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2 3 2

2 1 0( )v v d v d v d       (18) 

Where v  is a function of  .The integral form of Eq.(18) is  

 
0

3 2

2 1 0

( )
dv

v d v d v d
    

  
  (19) 

Denote  

 
3 2

2 1 0( )F v v d v d v d      (20) 

 

3 2
2 2 31 32 2

0 1 2 1 1

2
27( ) 4( )

27 3 3

d dd d
d d d D d            (21) 

According to the complete discrimination system, we give the corresponding single traveling wave solutions to Eq.(6).  

Case1. 10 0 ( ) 0D F v       has a double real root and a simple real root. Then we have  

 
2

1 2 1 2( ) ( ) ( )F v v v          (22) 

When 2v  , the corresponding solutions are  

1 1
3 31 22

1 2 1 2 2 1 2 0 2 1 2

2 2
( ) {( ) tanh [ ( ) ( )] } ( )
3 2 3

u a a k x k y t
 

      
 

          (23) 

1 1
3 31 22

2 2 1 2 2 1 2 0 2 1 2

2 2
( ) {( )coth [ ( ) ( )] } ( )
3 2 3

u a a k x k y t
 

      
 

          (24) 

1 1
3 31 22

3 2 1 2 2 1 2 0 1 1 2

2 2
( ) {( )sec [ ( ) ( )] } ( )
3 2 3

u a a k x k y t
 

      
  

           (25) 

Case2. 10 0 ( ) 0D F v       has a triple root. Then we have  

 
3( ) ( )F v v     (26) 

The corresponding solution is  

 
2
3 2

4 2 1 2 0

2
4( ) ( )

3
u a k x k y t  

        (27) 

Case 3. 10 0 ( ) 0D F v       has three different real roots. Then we have  

 1 2 3 1 2 3( ) ( )( )( )F v v v v              (28) 

When 1 2v    ,we take the transformation as follows  

 
2

1 2 1( )v sin        (29) 

According to the Eq.(19),we have  

 
0

2 2
3 1

2
( )

( ) 1

dv d

F v m sin


 

  
    

 
   (30) 

Where 2 1

3 1

2m
 

 




 .On the basis of Eq.(30) and the definition of the Jacobi elliptic sine function, we have  

 
3 12

1 2 1 1 0( )sn ( )
2

v m
 

    
 

      
 
 

 (31) 

The corresponding solutions is  

 
1 1
3 33 12

5 2 1 2 1 2 1 2 0

2 2
( ) ( )sn ( ) ( )
3 2 3

u a a k x k y t m
 

    

  

         
    

 (32) 

When 3v   ，we take the transformation as follows  

 

2

2 3

2

sin

cos
v

  



 
   (33) 
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The corresponding solutions is  

 
 

 

1
3 1 3

1
3

1
3 1 3

2 2
3 2 2 1 2 02 3

6 2
2 2

2 1 2 02 3

sn ( ) ( )2
( )
3 cn ( ) ( )

a k x k y t m
u a

a k x k y t m

 

 

   

 







     
  
 

     

 (34) 

where 2 1

3 1

2m
 

 




 .  

Case4. 0 ( ) 0F v     has only a real root. Then we have  

 
2 2( ) ( )( ) 4 0F v v v pv q p q         (35) 

When 1v   ,we take the transformation as follows  

 
2 2tan

2
v p q


        (36) 

According to the Eq.(19),we have  

 
1
4

0 22 2 2

1

( )( )( ) 1

dv d

p qv v pv q m sin


 

  
   

    
   (37) 

where  2

2

2 1
2

1
p

p q
m



 



 
  .On the basis of Eq.(37) and the definition of the Jacobi elliptic cosine function,we have  

 

 
1
4

2

2

2

1 0

2

1 cn ( ) ( )

p q
v p q

p q m

 
  

   

 
     

    
 (38) 

The corresponding solutions is  

 

 
1
3

11
34

2

2

7 2
2 2

2 1 2 03

22
( )
3 1 cn ( ) ( ) ( )

p q
u a p q

p q a k x k y t m

 
  

   

 
 
 
 
 
 
  

 
     

      
 (39) 

In Eqs.(23)(24)(25)(27)(32)(34) and (39),the integration constant 0  has been rewritten,but we still use it. The solutions 

( 1 7)iu i     are all possible exact traveling wave solutions to Eq.(1). We can see it is easy to write the corresponding 

solutions to the KP-BBM equation .  

 

CONCLUSION 
Trial equation method is a systematic method to solve nonlinear differential equations. The advantage of this method is 

that we can deal with nonlinear equations with linear methods. This method has the characteristics of simple steps and 

clear effectivity. Based on the idea of the trial equation method and the aid of the computerized symbolic computation, 

some exact traveling wave solutions to the KP-BBM equation have been obtained. With the same method, some of other 

equations can be dealt with.  
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