
 117

Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X (Online)

Sch. J. Eng. Tech., 2015; 3(2A):117-123 ISSN 2347-9523 (Print)
©Scholars Academic and Scientific Publisher

(An International Publisher for Academic and Scientific Resources)
www.saspublisher.com

Research Article

Sniper: A search engine for domain semantic knowledge
Zhiqiang Wang

College of information and technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.

*Corresponding author

Zhiqiang Wang

Abstract: This paper presents Sniper, a knowledge-based computer field search engine in Semantic Web. Sniper takes

WordNet as background ontology and integrates the entities in the semantic documents by mapping them to the synsets
of WordNet. Sniper returns the most related knowledge in computer field as result according to user's query. The search

results of Sniper are displayed in the form of list of entities, including concepts and instances, which are extracted from

heterogeneous ontology, so the result is close to user’s intention. Comparing with the traditional search engines and the

current semantic search engine, Sniper can show the relevant information that users want more accurately. The index

structure of sniper is an inverted index structure of path that based on domain ontology is proposed in this paper. The all

of distinct entities in domain ontology are indexed; and for each distinct entity an inverted list, storing the entity and the

identifiers of the path containing the entity, and experimental results show that the index structure is more suitable for the

query of multiple keywords and it can eliminate the ambiguity and achieve the semantic expansion of query keywords.

Keywords: Semantic search engine, semantic documents, ontology mapping, inverted index; paths of ontology

INTRODUCTION

In 2000 Tim Berners-Lee made a formal

presentation on the concept of Semantic Web and its

architecture at the XML2000 international conference.
The Semantic Web is an extension of the current Web.

The core idea of Semantic Web is knowledge-sharing,

between computers and computers, people and

computers. By this means the resource in the Semantic

Web is machine understandable and rich of semantic.

Unlike the traditional search engines which based on

the World Wide Web (WWW) (such as Google[1],

Yahoo!, Baidu etc.), semantic search engines based on

the Semantic Web and apply the semantic technology to

improve the performance. How to build the architecture

of semantic search engine to make good use of semantic

information of Semantic Web is a new challenge.

With the development of Semantic Web, semantic

search engine become a hot research issue. There are

different types of semantic search engine at present

according to different object and purpose for searching.

We divide the semantic search engine into three types

in this paper. First, the search engines that based on

Web, apply natural language processing to search, aim

to improve the way we find information by unlocking

the meaning encoded in ordinary human language, such

as, PowerSet[2], Hakia[3], etc. Second, the search
engine that fetched data from both the traditional and

the Semantic Web. Andreas Harth proposed a pipelined

architecture[4] that fetched large amounts of semi-

structured data from the Web and transformed them into

RDF. It is a architecture to crawl and index data from

both the traditional and the Semantic Web. Third, the

search engines that searched for semantic documents,
such as, Swoogle[5] , Watson[6] and Falcons[7] , etc.

They have similar style with traditional search engine

interface, use keyword search, supply the services of

search for RDF, RDFS, OWL, etc, and display the

search results for each semantic document. But it is

difficult to understand the search results for users who

lack of knowledge of Semantic Web.

In this paper, we propose a knowledge-based

semantic search engine-Sniper on computer field .The

search result of Sniper is different from the semantic

search engines mentioned above which aim at semantic
documents. Sniper does not only list the search results

to the user, but give the best meet with user's query

demand. It analyses the intent of user's query,

correspond concepts or instances with query keywords,

and integrates all related structured information of

entities on base of ontology mapping, recommend the

most relevant resources for users and show all of these

information in a whole page.

The remainder of this paper is organized as

following: In Section 2 we detail the structure of Sniper
which contains Focused crawler, Ontology mapping

and Semantic Index. Section 3 details Sniper semantic

search engine, analyses and explains search results In

http://www.saspublisher.com/

Wang Z., Sch. J. Eng. Tech., 2015; 3(2A):117-123

 118

Section 4 concludes the paper and propose possible

research work in future.

Sniper structure
The structure of Sniper is composed of 4 main

modules, as illustrated in Figure 1 which is: Focused
Semantic Crawler, Ontology Mapping, Parser, and

Indexer.

Focused Semantic Crawler Under the guidance of the

Domain Ontology, Focused Semantic Crawler fetches

the semantic documents for computer field from Web.

Semantic documents that fetched from Web are divided

into two categories, ontology and other semantic

document.

Focused

Semantic

Crawler

Semantic web

user

Ontology

Mapping

Parser

interface

ontology

Indexer

sd

Semantic

data index logdocument repository

Fig. 1 Framework of Sniper

Ontology Mapping The Ontology Mapping is the
process of determining correspondences between

concepts from different ontology. It can enrich and

expand the Domain Ontology, then the new Domain

Ontology indirect Focused Semantic Crawler to fetch

semantic documents.

Parser The function of Parser is to parse all the

semantic documents including Domain Ontology.

Indexer The Indexer is to build index for the

semantic data that is parsed by parser. During the
process of index, we also build index for the data of

Ontology Mapping and the result of Semantic

Clustering based on concepts and instances and store

the data into repository. So it is convenient for user to

query.

1.1 Focused Semantic Crawler

It is important to the semantic search engines,

because the Focused Semantic Crawler provides the

materials for showing and analysing. The main

difference between Semantic Web crawler and Web

crawler is that they analyse different type of documents.
The Semantic Web crawler deals with semantic

documents. The semantic documents model obtains

topic information by parsing the syntax of RDF or

OWL. So it is different from Web document model. It is

crucial problem to the Semantic Web crawler that how

to acquire more relevant resources during shorter time.

There are two approaches for the Focused Semantic

Crawler to obtain semantic documents. The first is to

search through semantic search engine, such as

Swoogle, Watson, etc, and extract more URIs based on
these semantic documents. Another is to select several

URIs that point to the semantic document that contains

a large number of semantic links as begin for crawling.

For the vertical search, the critical problem is to obtain

semantic documents related to theme by parsing them,

and find additional source to crawl through extracting

URI from current documents. The Focused Semantic

Crawler of Sniper improves Slug[8] . It represents the

content of documents by extracting the entities, and

then, compares the content with the computer domain

ontology we extract from WordNet, if a semantic

document is regarded as domain-dependent on
computer, it will be stored into the documents

repository. These documents can be used as materials

for other modules. In the course of fetching documents,

there are some isolated semantic documents that have

not pages which point to and not point to other pages.

We proposed a method to describe the content of

document by integrate semantic cluster in lexicon with

Word Sense Disambiguation. In this Method, we use

the concept of maximum probability density clustering

algorithm to accurately improve classification of the

content of the document. We regularly adjust the
parameters of path prediction algorithm through related

samples and access patterns that by mining the user log.

1.2 Ontology Mapping

Gruber[9] has defined the ontology as “an explicit

specification of a conceptualization” and the purpose of

ontology is “knowledge share”, but it is impossible to

construct a global ontology that covering everything, as

the knowledge of the world is infinite, and the

subjectivity and distribution during the construction of

ontology. In fact the different users construct their own

ontology according to their application requirements, so
there is a lot of ontology that the contents they have

described is overlapping or related, and the

representation model and ontology language that they

have used is various, this is called heterogeneous

problem of ontology. Ontology mapping can solve this

problem by establishing alignment for the same or

similar elements between different ontology. As a

knowledge-based semantic search engine Sniper need to

map the large number of heterogeneous ontology on

domain ontologies. The method of ontology mapping is

various. GMO[10] uses bipartite graphs to represent
ontology, and measures the structural similarity

between graphs by a new measurement. RiMOM[11]

and presents a dynamic multi-strategy ontology

alignment framework and propose a strategy selection

method to automatically combine the matching

strategies based on two estimated factors. ASMOV[12]

is a novel algorithm that uses lexical and structural

Wang Z., Sch. J. Eng. Tech., 2015; 3(2A):117-123

 119

characteristics of two ontology to iteratively calculate a

similarity measure between them. The value of concept

similarity more think about the property of concept

during the process of Ontology mapping at present, less

consider the influence of instance. Ontology Mapping

algorithm of Sniper based on OLA[13] algorithm that
proposed by universities in Montreal, Canada and We

improved this algorithm. The Conceptual similarity

algorithm of OLA is the sum of label similarity,

instance similarity, super and subclasses similarity and

the similarity of properties. Sniper improves OLA

algorithm. Such as, match type of entity strictly and

exactly, expand the instance similarity, etc.

1.3Parser

It is essential to parse the semantic documents for

building index, and it is convenient for us to

expediently display and manage the semantic structure
information. The semantic documents were divided into

two categories, ontology document and semantic data

document. The majority of documents are ontology

documents; the other is HTLM Web that after semantic

tagging and the web has some semantic information.

From 1998 Tim Berners-Lee proposed the Semantic

Web to the present, the development of ontology

language from RDF that possesses simple semantic

relations, RDFS that can simply describe ontology to

DAML+OIL, OWL that possesses the ability of

stronger reasoning and describing, so the ability of
description of ontology language is becoming richer

and richer. Therefore, we need to classify the Semantic

Web Documents according to ontology language and

call different parsing model to parse the semantic

documents. The tool of parsing semantic document is

Jena, developed by HP Labs Semantic Web application

framework for java. The related information of concept

or instance extracted from the semantic documents,

including the relation of concepts and instances, the

relation of concepts and concepts, and the relation of

concepts or instances and semantic documents, etc, and

stored data into the repository. The work of parsing is
divided into two parts, parsing standards and parsing

the semantic documents. Parsing standards is significant

to parse other semantic documents, such as RDF,

RDFS, DAML, OWL, etc. These standards are

Semantic Web standards that W3C recommended, and

they are principal to build Semantic Web. Parsing the

semantic documents includes pre-processing, parsing

and stores the data into repository.

1.4Indexer

Sniper will show all information that related with the
user's query in a whole page, including semantic

structure information and resource recommended to the

user. So we need to build index for the data after

parsing, the data after Ontology Mapping and the data

after Semantic Cluster in order to quickly response to

user's queries. The indexer of Sniper consists of

Semantic Cluster of entity and Index Model.

1.4.1 Semantic Clustering

The objects of Semantic Cluster are mainly for

concepts and instances. So we also call it semantic

entity cluster. The entities were clustered in order to

recommend the most relevant resources to the user. We
integrate all similar entities into a cluster by semantic

distance of entities. The goal of semantic entity cluster

is to show the recommended the most similar resource

for the user's query, and enhance the hit rate of query

results that meet the user's query intent. The measure of

semantic entity cluster adopts conceptual similarity

based on WordNet. The conceptual similarity takes into

the distance of two entities in the WordNet, the amount

of information of entity, and hierarchy of entity. It is

certain influent to conceptual similarity that exist

multiple connection paths between two entities. If the

value of similarity is greater than a certain threshold, we
will form entity cluster. We build index for cluster in

order to provide the most similar resource for user. And

we can quickly find the entity from the index to

correspond with the query keyword and obtain a sorted

set according to the similarity.

1.4.2 Index Model

Index is another way to represent data. The order of

the indexing data is different from the physical storage

order on disk. The role of the index is able to provide

fast query. We designed four index structures according
to the needs of Sniper, and the index model consist of

these index. The four index structure is linked together

and support fast query of Sniper. The four index

structure is ontology mapping index, keyword index,

concepts or instance index and cluster index.

The ontology mapping index is to enhance the

performance of Ontology Mapping. In the process of

Ontology Mapping, the number of pairs of concept

matching is the Cartesian product of the number of

concepts in two ontologies, if the number of concept is

the large number of in two ontologies, then the
calculation of the similarity of the two concepts is a

long time process. Therefore we build a B-tree index for

ontology mapping in order to reduce the time of

matching process. If the string similarity above a certain

threshold, we put the concepts in the same node, thus

reducing the concept of the matching process, greatly

reducing the time Ontology Mapping process.

The keyword index is build for concept and instance.

It can make the query keywords quickly correspond to

concepts or instances. We use the B+tree as the
structure to locate concepts and instance. It is enough to

contain the whole concepts and instances due to the

features of B+tree.

 Concepts or instance index are consist of inverted

index, mapping index and semantic index. The inverted

index includes the frequency of entities, the position of

Wang Z., Sch. J. Eng. Tech., 2015; 3(2A):117-123

 120

entities and the document that contain the entity, etc.

The mapping index is built for the data after ontology

mapping. The semantic index is built for the data after

parsing.

The semantic clustering index is for the data after
semantic entity cluster. So Sniper can recommend the

most correlative entity with the query keyword.

1.4.3 The structure of index

The structure of inverted index of entity and path

The inverted index of entity and path is similar to the

traditional inverted index of term and document. The

structure of traditional inverted index as pictured in

Figure 2.

Term N

Term 2

Term 1

... ...

doc 1 positon 1

doc 2 positon 2

... ...

doc 1 positon 1

doc 2 positon 2
... ...

doc 1 positon 1

doc 2 positon 2
... ...

...

...

...

...

...

...

...

...

...

...

Fig. 2 the structure of traditional inverted index

The entry of inverted index is term, and can find the

collection of documents that contain the term. This

collection is called hits and the hits include the

information of the position of term in document, etc. we

refer to the idea of traditional inverted index and
designed the inverted index of entity and path as

depicted in Figure 3. The entry of inverted index of

entity and path is term, too, and term corresponds to the

entity. We can find the collection of path that contain

the term by querying the inverted index of entity and

path and the path include the information of the position

of term and length of path. The path is combination of

multiple words that have semantic relation.

Term N

Term 2

Term 1

... ...

path 1 positon 1

path 2 positon 2

... ...

path 1 positon 1

path 2 positon 2
... ...

path 1 positon 1

path 2 positon 2
... ...

...

length1

length2

...

length1

length2
...

length1

length2
...

...

...

...

...

...
...

...

...
...

Fig. 3 the structure of the inverted index of entity

and path

We query the inverted index of entity and path by a

keyword, the results is a collection of path that contains

the query keyword. When the number of query

keywords is multiple, the results will be the collection
for each query keyword. Then we can obtain

intersection of collections and the path in the

intersection collection that contains multiple query

keywords. According to the position of query keyword

in the path, we calculate the distance between query

keyword, and return the most relevant semantic paths.

The structure of entity index

The purpose of entity index is to record the position

of entity in path index file that consist of entity and the

path set that contain the entity. We establish a map of

entity and the position of entity in path index file so as

to quickly find the set which contains the entity. As

showed in picture Figure 4

CD_drive 2988156

word offset

mouse_click 112828

firewall 3348142

Intelnet 3577474

... ...

computer_monitor 3085219

mother_board 3125057
disk_cache 3209141

4

Id

1

2
3

...

5

6
7

Fig. 4 the structure of entity index

Each entity has a unique ID and map the entity to the

offset of entity in path index file. Such as, we query the

“firewall” ,we can obtain the all path that contain

“firewall” by fetching the set from path index file in

position “3348142”. So we can quickly find the paths

that contain entity.

1.4.4 The process of construct index

Domain Ontology

The Domain Ontology is constructed by the expert in
the field and reflects the general view of the field. It

describes the semantic information of concepts by

relations of concepts. The hierarchy of concepts is not a

tree, it is a reticular structure because the relation of

concept not only hyponymy but also concept connect

with concept by other relation. The Domain Ontology

in this article is extracted from the WordNet language

ontology. WordNet was constructed by Princeton

University psychologists, linguists and computer

engineers, based on cognitive linguistics. It dose not

only order the words in alphabetical, and according to

the meaning of words to form a “word network”. We
only extract the words that belong to computer field

from WordNet in order to obtain computer domain

ontology. The process of construct computer domain

ontology as follow: first, we extract vocabulary of

computer field from the computer topic of Open

Directory1. Second, we extract the synsets from

WordNet refer to the computer vocabulary that from

Open Directory. We extract synsets start with “entity”,

use the attribute relation of WordNet find next synsets,

1
 http://www.opdir.com/. Open Directory uses a hierarchical

ontology scheme for organizing site listings. Listings on a similar

topic are grouped into categories, which can then include smaller

categories.

Wang Z., Sch. J. Eng. Tech., 2015; 3(2A):117-123

 121

until the attribute relation end or synsets not in

computer field. We store the all computer synsets and

relation into rdf file to form computer domain ontology.

Path

The main work in inverted index of entity and path

is to obtain paths from domain ontology. The hierarchy
of concepts in the domain ontology is not a structure of

tree, it is a reticular structure. According to the position

of node in the reticular structure we divide the nodes

into leaf node and non-leaf node. We get two leaf nodes

from computer domain ontology as endpoint of the

path, extract all possible paths that connected the any

two leaf node. So we obtained all path of domain

ontology.

Construct Index

The index is consisted of the path index file and

entity index.
The process of construct the path index file, as follow:

1. Divide the words from path into the set of

keyword.

2. Record the position of keyword in path and

belong to which path. The purpose of record

the position of keyword in path is to calculate

the distance between keywords in path so as to

obtain the path that more related to the query

keywords.

3. Construct the inverted index for keywords and

path.
4. Write the indexed information of keywords

and path into the file of inverted index of path.

1. In the above 4, we also record the position of

keyword in the path index file in order to

construct entity index. The entity index map

keyword with its position in the path index

file.

2. The keywords in entity index correspond to the

entity in the computer domain ontology, and

the keyword correspond s to the unique

keyword position in the path index file.

1.4.5 Experiment

Test environment: DELL OPTIPLEX 740， AMD

Athlon(tm) 64 X2 Dual Cord Processor 3600+ 1.90GHz

CPU, 2G DDR, Microsoft Windows XP operating

system.

First, we test the performance of the inverted

index of path by input single query keyword, double

query keywords and three query keywords. The results

of test are display in Tab 1, Tab 2 and Tab 3. It should

be explained that the capacity in table is the capacity of
path set correspond to each keyword.

Tab 1 is the comparison of response time of

ranked and inverted index of path whit single query

keyword. From the Tab 1, we can conclude that the

query responded time of the inverted index of path is

proportional to the capacity of path. The query

responded time of the ranked index of path has a little

change because the process of the query the ranked

index is same.

Table -1:The Comparison Of Response Time

Of Ranked And Inverted Index Of Path Whit Single

Query Keyword

words Rank

time

Inverse

time

capacity

typewriter 1453(ms) 0(ms) 1kb

briefcase

computer

1469(ms) 16(ms) 10kb

computer

peripheral

1484(ms) 172(ms) 100kb

computer 1471(ms) 1765(ms) 1161kb

Tab 2 is the comparison of response time of

ranked and inverted index of path whit double query

keywords. Tab 3 is the comparison of response time of

ranked and inverted index of path whit three query

keywords. From the Tab 2 and Tab 3, the query

responded time of the inverted index of path is shorter

than the query responded time of the ranked index of
path.

Table -2:The Comparison Of Response Time Of

Ranked And Inverted Index Of Path Whit Double

Query Keywords

words Rank

time

Inverse

time

capacity

Typewriter

keyboard

1469(ms) 234(ms) (1+135)kb

briefcase

computer

Portable

computer

1438(ms) 65(ms) (10+27)kb

computer

peripheral

printer

1485(ms) 185(ms) (100+8)kb

Table-3: The Comparison Of Response Time Of

Ranked And Inverted Index Of Path Whit Double

Query Keywords

words Rank

time

Inverse

time

capacity

Typewriter

Keyboard

typewriter

keyword

1453(ms) 293(ms) (1+135+35)kb

briefcase

computer

Portable

computer

PC

1469(ms) 97(ms) (10+27+20)kb

computer
peripheral

Printer

dot printer

1484(ms) 236(ms) (100+8+30)kb

Wang Z., Sch. J. Eng. Tech., 2015; 3(2A):117-123

 122

Second, we analyse the results of the path query. We

input the query keywords computer and cpu, the query

result is a path-“server→computer→cpu→cpu_board”.

When we input the query keywords computer_network,

client and foreground, the query result is a path-

“client→computer_network→network→System”. So
we can see that the path can better meet the query

requirement of user and realize the semantic expansion

of query keywords.

The multiple keywords that the user’s input for query

describe the user’s query object in all aspects. So the

inverted index of path is more suitable for the query of

multiple keywords. From the experimental results we

can see that the inverted index of path not only

eliminate ambiguity of query keywords but the other

words in path is complementary for query keywords,

and enhance the user's query satisfaction.

Semantic search engine-sniper

Sniper is a knowledge-based semantic search engine

for computer field. The goal of Sniper is to show an

accurate and general knowledge of computer field for

user's query. The search results of Sniper are displayed

in the form of knowledge in order to improve user's

satisfaction. If the query keyword is a single word,

Sniper will match keyword based on etyma and

correspond with the entity. The all information related

to keyword will be obtained through the index model. If
the keyword has more senses, the related information

will be showed in classification according senses. If the

keyword is not a single word, the query object can be

described by these keywords in all aspects. These

keywords are interrelated with the query object, so the

concepts correspond with these keywords will be strong

semantic interrelation. We match these keywords to the

entities so as to obtain semantic combination of

interrelated entities that better represent the intent of

user's query, and return more accurate query results.

In order to better illustrate the process, we enter the
query word computer in the search interface of Sniper.

The query results as shown in Figure 5.

Fig-5:The resulted page of Sniper

 Computer, in the figure, represent concepts in

different ontology, if click on it, the page will be show

the information of computer in different ontology. The

information include label, comment, URI, URL of

document, etc. Similarly, other elements have also

gathered information from different ontology. We can
see from the page that not only shows the Data type

Property of computer but also demonstrates the value of

Data type Property, for example, the has Operating

System that have values of Windows, Linux and Unix.

There are many concepts have relation of part of to

computer, such as, Hard Drives, Memory, etc, and have

related resource recommended to the user. So this result

page can greatly satisfy the user's query intent.

CONCLUSION

This paper presents a semantic search engine for the

semantic document of computer field, Sniper. We have
presented the system structure, basic functions and its

realization. Sniper has the following characters:

 Sniper is a semantic search engine based

on Semantic Web for the knowledge of

computer field.

 Sniper is a ontology-based knowledge

extraction framework. Sniper extracts the

knowledge dispersed anywhere can be

retrieved and align ontology into a domain

one.

 Sniper integrates the concepts and
instances of different ontology by

ontology mapping technology, so Sniper

refines the query result and returns the

most relevant information to the user's

query.

 The index structure of sniper is an

inverted index structure of path that based

on domain ontology, which enhance the

user's query satisfaction.

Sniper goes well in our laboratory at present, but
there is a lot of work needs to do in the future, such as

extending the semantic relation of ontology to be more

consistent with human understanding, enhancing the

power of keyword query supporting, extracting the

entities from the WWW, and so on. It is also a future

work to expand Sniper to other domains.

Acknowledgement:

Fund project: scientific research of Hei Long Jiang

agricultural reclamation bureau（ HNK125BZD-04-

21） .

REFERENCES

1. Brin S, Page L; The anatomy of a large-scale

hypertextual Web search engine. Computer

Networks and ISDN Systems, 1998.

2. Powerset website. [Online]. Available:

http://www.powerset.com/

Wang Z., Sch. J. Eng. Tech., 2015; 3(2A):117-123

 123

3. Hakia website. [Online]. Available:

http://www.hakia.com/

4. Harth A, Umbrich J, Decker S; MultiCrawler

Crawling and Idexing Semantic Web data. Proc.

2006 In 5th International Semantic Web

Conference.
5. Ding L, Finin T, Joshi A, Pan R, Cost RS, Peng R,

et al; Swoogle : a search and metadata engine for

the semantic web. Proc. 2004 Information and

knowledge management,

6. D’Aquin M, Sabou M, Dzbor M, Baldassarre C,

Gridinoc L, Angeletou S, et al.; Watson: A

Gateway for Next Generation Semantic Web

Applications. Poster session of the International

Semantic Web Conference, ISWC 2007.

7. Cheng G, Ge W, Qu Y; Falcons: searching and

browsing entities on the semantic web. In

Proceedings of the 17th international conference on
World Wide Web , 2008; 1101-1102.

8. Dodds L; Slug: A Semantic Web Crawler. Jena

User Conference, Bristol , 2006.

9. Gruber TR; A translation approach to portable

ontology specifications. Knowl. Acquis., 1993.

10. Hu W, Jian N, Qu Y, Wang Y; GMO: A Graph

Matching for Ontologies. Ontologies, K-CAP

Workshop On Integrating, Banff, Canada, 2005

11. Juanzi L, Jie T, Yi L, Qiong L; RiMOM: a dynamic

multistrategy ontology alignment framework,"

IEEE Transactions on Knowledge and Data
Engineering, 2009.

12. Jean-Mary YR, Shironoshita EP, Kabuka MR;

Ontology matching with semantic verification.

Journal of Web Semantics, 2009.

13. François J, Kengue D; OLA in the OAEI 2007

Evaluation Contest. ISWC + ASWC Workshop on

Ontology Matching, 2007

