Scholars Journal of Applied Medical Sciences (SJAMS)

Sch. J. App. Med. Sci., 2014; 2(4C):1367-1370

©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublishers.com DOI: 10.36347/sjams.2014.v02i04.044

Research Article

ISSN 2320-6691 (Online) ISSN 2347-954X (Print)

A Cross-Sectional Study of Anthropometric Measurements of Adolescent Girls in an Urban School of North India

Harinder Sekhon^{1*}, Sukhmeet Minhas²

¹Chief Medical Officer (Psychiatrist), Composite Hospital, Group Centre, Central Reserve Police Force, Bantalab, Jammu – 181123, Jammu & Kashmir, India

²Reader, Department of Community Medicine, Armed Forces Medical College, Pune – 411040, Maharashtra,

India

*Corresponding author Harinder Sekhon Email: drharindersekhon@yahoo.com

Abstract: All individuals who have a Body Mass Index that exceeds the 95th percentile specified for age and gender are over weight. Those who have BMI that is between the 85th and the 95th percentiles are considered to be at risk of overweight. Prevalence of obesity is increasing at all ages worldwide. In fact, children are very often becoming overweight at a comparatively younger age and this can be gauged by their anthropometric measurements. The present study was undertaken in order to study the anthropometric measurements of school going girls in the age group of 13-19 years in a school in North India. Anthropometric measurements of all the study subjects were recorded by conducting a cross sectional descriptive study. All 1149female students, aged 13 to 19 years who were enrolled in the school in class seventh to twelfth, during the study period were studied. Results had shown that the mean weight, height and BMI increased from 41.50 (SD=2.40), 149.40 (SD=3.00), and18.58 (SD=0.44) at the age of 13 years to 44.03 (SD=4.43), 149.51 (SD=7.66), and19.76 (SD=2.07) by the age of 19 years respectively. In conclusion, with increasing age, the mean of anthropometric measurements is increased. This increase was found to be steady as the age increased. **Keywords:** Adolescent, anthropometry, girls, obesity, overweight, urban

INTRODUCTION

Overweight and/or obesity are defined as accumulation of abnormal or excessive fat that may impair health [1,2].It may be simply just a state of excess of adipose tissue [3,4]. Evidence based on surveys indicates that there is a rising incidence of overweight and obesity among all age groups [4,5]. It has been found in many studies that the prevalence of combined overweight and obesity is more in girls (16.66%) than in boys (12.48%) [6]. A "double burden" of disease exists now. This is faced more so by many low- and middle-income countries. Also, the attitude of the family members, in many cases, is not found to be supportive towards the young girls [4-6]. All this affects their immediate growth as well as the future development too [5-7]. Anthropometry is one way of making this observation [8, 9]. Adolescent health is an important aspect of healthcare, recognized worldwide [8,9]. But in India, like many other countries, this is an issue which is insufficiently acknowledged and so far, has not received the adequate attention [10,11]. Several small scale studies have been undertaken with the objective of determining the prevailing knowledge and experiences about this phase of the life cycle, among adolescent school girls in rural and urban settings

[6,12].In a school based study conducted with N=312 female subjects aged between 5-8 years, it was found that 15.4% of the girls were overweight whereas 5.4% were at risk of overweight [8].

MATERIALS AND METHODS

The anthropometric measurements of school girls in the age group 13-19 years in an urban school of North India were studied as part of a cross sectional descriptive study. All the 1149female students, aged13 to 19 years enrolled in class seventh to twelfth of the school present during the study period were included in the study. Before start of the study, ethical clearance was obtained, informed consent was taken from the parents and the relevant authorities of the school were briefed about the scope of the study, with a view to solicit their cooperation. The age was recorded to the nearest completed year (6 months and above being rounded off to the next year and less than six months to the previous year) as per the official records of the school. Record of the educational status of the child was restricted to the class in which the child was studying at time of data collection. Anthropometric the Measurements recorded during the conduct of the study were weight, height, Body Mass Index (BMI), Waist Circumference (WC), Hip Circumference (HC) and Waist to Hip ratio (WHR) was calculated. Measurements were taken with the full uniform on, less the belt and shoes and were conducted on the guidelines issued by the World Health Organisation. Data was analysed using Epi Info software.

RESULTS

Distribution of study subjects by their age is shown in Fig.1.

Fig. 1: Distribution of study subjects by their age

On calculating the means of weight of the study subjects by their age, it was observed that the mean weight increased with increase in age from 13 to 19 years (table 1).

Table 1: Distribution of means of weight of study
subjects by their age

Age	Observations	Mean	SD
13	25	41.5200	2.4000
14	145	41.5241	10.9126
15	131	42.0534	4.5831
16	151	42.2450	4.6245
17	264	43.6629	5.1940
18	215	43.8042	5.5637
19	218	44.0321	4.4301

Mann-Whitney/Wilcoxon Two-Sample Test (Kruskal-Wallis test for two groups)

Kruskal-Wallis H (equivalent to Chi square) =	306.1570
Degrees of freedom =	6
p value =	0.0000

On calculating the means of height of the study subjects by their age, it was observed that the mean height increased with increase in age from 13 to 19 years (table 2).

	subjects by then age				
Age	Observations	Mean	SD		
13	25	139.4000	3.0000		
14	145	143.8207	6.9319		
15	131	145.4733	5.5917		
16	151	148.2980	5.3026		
17	264	150.3580	8.5179		
18	215	153.8163	6.2551		
19	218	154.5138	7.6636		

 Table 2: Distribution of means of height of study subjects by their age

Mann-Whitney/Wilcoxon Two-Sample Test (Kruskal-Wallis test for two groups)

Kruskal-Wallis H (equivalent to Chi square) =	223.0216
Degrees of freedom =	6
p value =	0.0000

Distribution of means of BMI of the study subjects by their age is given in table-3. It was observed that the mean BMI increased with increase in age from 13 to 19 years.

Table 3: Distribution of means of BMI of study subjects by their age

	subjects by their age				
Age	Age Observations Mean		SD		
13	25	18.5784	0.4412		
14	145	19.1869	3.6422		
15	131	19.4214	2.9025		
16	151	19.4690	1.4009		
17	264	19.5548	2.9749		
18	215	22.4557	4.1868		
19	218	19.7561	2.0661		

Mann-Whitney/Wilcoxon Two-Sample Test (Kruskal-Wallis test for two groups)

Kruskal-Wallis H (equivalent to Chi square) =	171.5470
Degrees of freedom =	6
p value =	0.0000

Distribution of means of hip circumference of the study subjects by their age is given in table 4.

Table 4: Distribution of means of hip circumference of study subjects by their age

Age	Observations	Mean	SD
13	25	85.8520	2.5400
14	145	85.2564	10.4847
15	131	89.9858	4.5875
16	151	87.3020	6.5426
17	264	87.7070	3.9054
18	215	93.9209	6.0420
19	218	87.6300	5.5351

Mann-Whitney/Wilcoxon Two-Sample Test (Kruskal-Wallis test for two groups)

Kruskal-Wallis H (equivalent to Chi square) =	241.9587
Degrees of freedom =	6
p value =	0.0000

Distribution of means of waist circumference of the study subjects by their age is given in table 5.

Table	5:	Distribution	of	means	of	waist
circum	feren	ce of study sub	iects	by their a	age	

Ag	ge	Observations	Mean	SD
13		25	78.2320	2.5400
14		145	75.3241	10.2013
15		131	80.5626	4.5685
16		151	79.4970	7.4418
17		264	78.1820	4.4665
18		215	85.2259	5.8551
19		218	77.7962	6.5995

Mann-Whitney/Wilcoxon Two-Sample Test (Kruskal-Wallis test for two groups)

Kruskal-Wallis H (equivalent to Chi square) =	254.9005
Degrees of freedom =	6
p value =	0.0000

On calculating the waist to hip ratio (table 6), it was observed that the mean WHR hardly varied with the increase in age from 13 to 19 years.

Table 6: Distribution of me	ans of waist to hip ratio
of study subjects by their ag	je

Age	Observations	Mean	SD
13	25	0.9112	0.0030
14	145	0.8831	0.0348
15	131	0.8954	0.0274
16	151	0.9095	0.0284
17	264	0.8914	0.0306
18	215	0.9076	0.0295
19	218	0.8870	0.0297

Mann-Whitney/Wilcoxon Two-Sample Test (Kruskal-Wallis test for two groups)

Kruskal-Wallis H (equivalent to Chi square) =	127.5890
Degrees of freedom =	6
p value =	0.0000

DISCUSSION

In the present study it was observed that the mean weight, height and BMI increased from 41.50 (SD=2.40), 149.40 (SD=3.00), and 18.58 (SD=0.44) at the age of 13 years to 44.03 (SD=4.43), 149.51 (SD=7.66), and 19.76 (SD=2.07) by the age of 19 years respectively. That is, with increasing age, there is an increase in the mean of anthropometric measurements. This increase was found to be steady as the age increased. Similar results were found in a community-based, descriptive, cross-sectional study conducted among adolescent girls in the age group of 10-19 years,

where the mean age of the study population was 16.9 ± 1.75 years [16].In another school based study conducted (N=699), 20.5% of the study subjects were found to be having BMI below <5th percentile 48.2% had BMI between \geq 5th - <85th percentile, 15.7% had BMI between \geq 85th - <95th percentile while 15.6% had BMI \geq 95th percentile. The study revealed that the proportion of overweight and at risk of overweight was 15.6% and 15.7% respectively and that the risk increased with increasing age [9].

On comparing with other studies, it was observed that the mean height of the subjects in the present study is comparable to that observed in other similar studies [13-16]. Similarly, the mean weight of the subjects in the present study is also comparable to other studies. Comparison of the mean BMI with respect to age of the subjects showed that the mean BMI of subjects in the present study is generally more [8-11,14-16].

CONCLUSION

In the present study we have observed that all the 1149 study subjects, aged 13 to 19 years had an increase in their anthropometric measurements as their age increased. The mean weight, height and BMI increased. This increase was steady as the age increased.

ACKNOWLEDGEMENT

The authors acknowledge the co-operation of the administrative authorities of the school as well as the students in the conduct of the study.

REFERENCES

- Donohoue AP; Obesity. In Richard BE, Robert KM, Jenson BHal editors; Nelson: Textbook of Pediatrics.18th edition, Saunders, Elsevier, 2008: 232-242.
- 2. World Health Organisation; Fact Sheet No.311. Sep 2006.
- 3. Available from http://www.who.int/mediacentre/factsheets/fs3 11/en/
- Flier SJ, Maratos-Flier E; Obesity. In Dennis KL, Eugene B, Anthony FS, Stephen HL, Danand LL, Larry JJ editors; Harrison's Principles of Internal Medicine. 17th edition, McGraw Hill: Medical Publishing Division,2008: 462-473.
- Weaver AK, Piatek A; Childhood obesity. In Queen SP, King HK, Carol LE editors; Handbook of PediatricNutrition.2nd edition, Jones and Bartlett Publications, 2004: 173-189.
- Kafatos A, Codrington CA, Linardakis M; Obesity in childhood: The Greek experience. In Artemis SP editor; World Review of Nutrition and Dietetics –Nutrition and fitness: Obesity, the Metabolic Syndrome,

cardiovascular disease and cancer, Volume – I, Karger, 2005: 27-35.

- Shah C, Diwan J, Bhabhor M, Gokhale P, Mehta H; Assessment of obesity in schoolchildren. Calicut Medical Journal, 2008;6(3):e2.
- 8. Minhas S; IEC: How much and for how long? Proceedings of CME on HIV/AIDS, AFMC, Pune, Jul 2009.
- 9. Minhas S, Chaudhary P, Sekhon H, Koshy G, Gangadharan V; A study of anthropometric measurements and prevalence of overweight amongst girls in an urban school. Int J Med Res Health Sci., 2013; 2(4): 861-869.
- Minhas S, Sekhon H; A study of anthropometric measurements and prevalence of overweight amongst school boys in an urban area. International Journal of Medical and Applied Sciences, 2013; 2(4): 299-315.
- Minhas S, Sekhon H; Psychosocial determinants of contraceptive practices amongst married women in a rural area of Maharashtra, India. International Journal of Medical Research and Health Sciences, 2014; 3(1):53-58
- BMI-Body Mass Index: About BMI for children and teens. Centres for Disease Control (CDC) Atlanta. Division of Nutrition and Physical Activity, National Centre for Chronic Disease Prevention and Health Promotion. Available from http://www.cdc.gov/healthyweight/assessing/b mi/
- 13. Reaven GM; Role of insulin resistance in human disease. Diabetes, 1988; 37(2): 1597-1607.
- Guyton CA, Hall EJ; The Cell and its functions. In Textbook of Medical Physiology. 11th edition, Saunders, Elsevier, 2006: 12; 842: 872-874.
- Rath B, Ghosh S, Mohan M; Anthropometric Indices of Children (5-15 years) of a Privileged Community. Indian Pediatr., 1978; 15(8): 653-665.
- Donohoue AP; Growth and Development. In Richard BE, Robert KM, Hal JB editors; Nelson: Textbook of Pediatrics. 17th edition, Saunders, Elsevier, 2004: 46-49.
- 17. Sekhon H, Minhas S; A comparative study of biopsy chosocial factors influencing the anthropometric parameters of adolescent girls in a rural and urban area of India. Sch J App Med Sci., 2014; 2(1B): 157-161.