3 OPEN ACCESS

Abbreviated Key Title: SAS J Med ISSN 2454-5112 Journal homepage: https://saspublishers.com

Family Medicine

Stroke Risk Stratification and Oral Anticoagulation in Atrial Fibrillation Patients Aged 65–74 Years

Dr Wania Asif Qureshi^{1*}, Dr Mohamed Irfan²

¹Specialist Family Medicine, Primary Healthcare Corporation, Doha, Qatar

DOI: https://doi.org/10.36347/sasjm.2025.v11i12.001 | **Received:** 17.09.2025 | **Accepted:** 23.11.2025 | **Published:** 03.12.2025

*Corresponding author: Dr Wania Asif Qureshi

Specialist Family Medicine, Primary Healthcare Corporation, Doha, Qatar

Abstract Review Article

This article investigates stroke prevention strategies in low-risk atrial fibrillation (AF) patients aged 65-74, a demographic with increased AF prevalence and stroke risk. While current guidelines advocate oral anticoagulation (OAC) for CHA2DS2-VA scores ≥2, guidance for those with a score of 1 (or CHA2DS2-VASc 2 with female sex) is less clear. We highlight the continuous rise in risk with advancing age and the influence of co-factors like chronic kidney disease, obesity, and smoking. Furthermore, we explore the benefits of anticoagulation, particularly direct oral anticoagulants (DOACs), which offer a more favourable safety profile compared to Vitamin K Antagonists in this age group. Until comprehensive clinical trial data are available for the CHA2DS2-VA 1 cohort, clinical decision-making must employ dynamic and nuanced risk stratification accounting for additional risk factors, AF burden and biomarker assessment to ensure OAC therapy is administered to achieve net clinical benefit.

Keywords: Atrial Fibrillation (AF), Stroke Prevention, Oral Anticoagulation (OAC), CHA2DS2-VA score, Direct Oral Anticoagulants (DOACs), Risk Stratification.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Introduction

Atrial fibrillation (AF) represents the most common sustained cardiac arrhythmia globally, with its prevalence strongly correlated with advancing age (Go *et al.*, 2001). Older age, particularly reaching 75 years or more, is a well-established independent risk factor for thromboembolic stroke in AF patients (Lip *et al.*, 2015). The clinical significance of this risk is underscored by data indicating that up to one-quarter of all strokes may be attributable to AF in individuals in their ninth decade of life (Wolf, Abbott and Kannel, 1991).

The necessity for clear thromboprophylaxis guidelines is further amplified by regional variances, such as those collected in the Middle East. In our region, studies demonstrate that older patients (aged >70 years) hospitalised with AF exhibit a higher burden of stroke and excess mortality. A likely factor contributing to this unfavourable prognosis is the lower reported utilisation of oral anticoagulation (OAC) therapy (Salam *et al.*, 2012), with only half of patients in one registry study adherent to guideline therapy for secondary prevention (Miyazawa *et al.*, 2019).

It is widely recognised that individuals with a CHA_2DS_2 -VA score (non-gendered) of 2 or higher should be considered for oral anticoagulation (OAC) due to a higher net clinical benefit from anticoagulation (Van *et al.*, 2024), a recommendation that already includes those aged \geq 75 as an isolated risk factor.

However, the guidance for lower-risk individuals with CHA₂DS₂-VA score of 1 or CHA₂DS₂-VASc of 2 with female sex remains less definitive. This score is recognised as an indicator of increased stroke risk and should be taken into account when considering OAC therapy, but its application is not established. In this paper, we explore the evidence for the 65-74-year age group, highlighting the specific risks associated with AF, as well as the potential benefits of anticoagulation therapy.

METHODS

A comprehensive, non-systematic literature review was undertaken to identify and evaluate existing publications relevant to AF, stroke risk stratification, and the net clinical benefit of OAC therapy. The primary focus was on the intermediate-risk cohort, specifically patients aged 65–74 years.

²Consultant Family Medicine, Primary Healthcare Corporation, Doha, Qatar

Reported Risk Variability:

In general, a CHA2DS2-VASc (gendered) risk score of 0 is associated with a low annual stroke rate, even accounting for variation across studies. However, for those with a score of CHA₂DS₂-VASc 1, stroke rates can range from 0.2% to 6.64% annually (Abraham et al., 2013 and Siu et al., 2014), with 3 out of 17 studies identified exceeding a 2% annual stroke rate in one analysis (Chao et al., 2016, Olesen et al., 2011 and Siu et al., 2014). Therefore, the absolute net benefit is difficult to derive. While genuine differences in risk rates may exist between different patient cohorts (e.g. between European and Far-East Asian populations) and within similar patient cohorts (e.g., demographics, genetic factors, co-morbidities), this implies that a portion of this variability could be attributable to methodological inconsistencies across studies (Quinn et al., 2017). This includes heterogeneity in methodologies relating to time in therapeutic range for Vitamin K Antagonists (VKAs) and assessment AF burden in individuals. Additionally, although Western body guidance has moved away from gendered scoring, there remains some evidence that

female gender consistently interacts with AF and ischaemic stroke risk (Basem *et al.*, 2025).

Risk Stratification by Age and Additional Related Factors:

In general, it can be assumed in this age bracket is that stroke risk is not fixed but increases continuously across the 65–74 age range. This is supported by one cohort study where stroke incidence increased gradually from 66 years (0.7%; 95% CI, 0.5%-0.9%) to 74 years (1.7%; 95% CI, 1.3%-2.1%) with no significant difference between men and women (Husam Abdel-Qadir *et al.*, 2021) (Figure 1). Additionally, a recent study examining a European cohort found a 2-fold risk of stroke in AF patients aged >70 (Morseth *et al.*, 2021), continuing to imply a trend towards a higher risk score at the upper end of our age bracket. This increasing realisation has led some authors to suggest lowering the age threshold for risk stratification and intervention (Kim *et al.*, 2018).

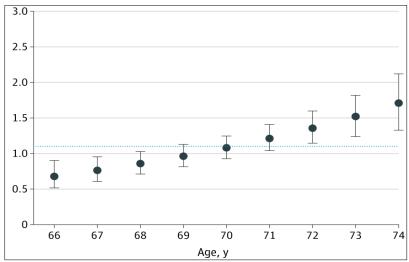


Figure 1: Cumulative Stroke Incidence (%) in patients aged 66 to 74 years (taken from Husam Abdel-Qadir et al., 2021)

Advancing age must then be coupled with additional known risk factors for stroke in AF patients, including chronic kidney disease (CKD), which increases the stroke risk by up to two-fold (Ocak *et al.*, 2022) and is more prevalent in the elderly (Salam *et al.*, 2012). Additionally, left atrial enlargement (Maurizio Paciaroni *et al.*, 2015) and certain biomarkers, including interlukin-6, troponin and naturieutic peptides (Singleton *et al.*, 2021 and Hijazi *et al.*, 2017) also confer increased risk, with ongoing studies evaluating biomarker-led stroke prevention. More relevant to the Middle-East, Obesity and smoking status are also established risk factors for AF and subsequent stroke (Bassand *et al.*, 2018 and Seiffge *et al.*, 2020).

Benefits of anticoagulation:

Bleeding risk is known to correlate with the CHA2DS2-VASc score (Jarrah et al., 2022), and

therefore those scoring 1 point are also likely to confer a lower bleeding risk. On the other hand, although it has been well-established that OAC therapy with VKAs can reduce the risk of stroke by up to 64% in non-valvular AF (Hart, Pearce and Aguilar, 2007), the net clinical benefit is not certain, with some studies suggesting no net clinical benefit in low-risk groups (Friberg, Skeppholm and Terént, 2015 and Singer, 2009) and others showing some benefit (Fauchier *et al.*, 2016).

With the advent of newer direct OACs (DOACs), which have shown efficacy at least non-inferior to VKAs, there is the added advantage of a 50% reduction in intracranial bleeding risk (Carnicelli *et al.*, 2022). Additionally, DOACs have demonstrated a more favourable profile than warfarin for both stroke/systemic embolism risk and major bleeding risk, particularly in the 65-75 age group (Carnicelli *et al.*, 2022). As a result, the

net clinical benefit of DOACs is likely to surpass that of VKAs, making them a more favourable choice for patients in this age group, further reinforced by a recent meta-analysis showing that DOAC profile is overwhelmingly more favourable than VKA, maximising the probability of a positive net clinical benefit in the lower risk groups (Fong *et al.*, 2023).

CONCLUSION

The management of AF patients aged 65-74 years, who generally present with CHA2DS2-VA score of 1, requires an elevated degree of clinical nuance and a departure from strictly categorical score reliance. There is a clear need to standardise methodologies for analysing patient cohorts and interrogating population databases to improve risk stratification in lower-risk groups with AF. Until further evidence is available from clinical trials, the net clinical benefit of OAC for individuals aged 65-74 must be considered with dynamic risk assessment, not discounting sex and accounting for other risk modifiers, including but not limited to CKD, obesity, smoking status and biomarkers. Further research on biomarker-led stroke prevention is therefore welcome and may help to further risk-stratify this age group and improve clinical decision-making on OAC. The evidence presented here supports the idea that older patients within the 65-74 age range are more likely to have a higher stroke risk, with a continuously increasing risk with advancing age, thus potentially benefiting more from DOACs in non-valvular AF, which appear to be the more favourable option for net clinical benefit than VKAs.

REFERENCES

- Abraham, J.M., Larson, J., Chung, M.K., Curtis, A.B., Kamakshi Lakshminarayan, Newman, J.D., Perez, M., Rexrode, K., Shara, N.M., Solomon, A.J., Stefanick, M.L., Torner, J.C., Wilkoff, B.L. and Wassertheil-Smoller, S. (2013). Does CHA2DS2-VASc Improve Stroke Risk Stratification in Postmenopausal Women with Atrial Fibrillation? The American Journal of Medicine, 126(12), pp.1143.e1–1143.e8. doi: https://doi.org/10.1016/j.amjmed.2013.05.023.
- Basem, M., Bonnesen, K., Szentkúti, P., Horváth-Puhó, E., Sørensen, H.T. and Schmidt, M. (2025). Interaction between atrial fibrillation or flutter and the CHA2DS2-VASc score on the risk of ischemic stroke: A population-based cohort study. International Journal of Cardiology, 435, p.133397. doi: https://doi.org/10.1016/j.ijcard.2025.133397.
- Bassand, J.-P., Accetta, G., Al Mahmeed, W., Corbalan, R., Eikelboom, J., Fitzmaurice, D.A., Fox, K.A.A., Gao, H., Goldhaber, S.Z., Goto, S., Haas, S., Kayani, G., Pieper, K., Turpie, A.G.G., van Eickels, M., Verheugt, F.W.A. and Kakkar, A.K. (2018). Risk factors for death, stroke, and bleeding in 28,628 patients from the GARFIELD-AF registry: Rationale for comprehensive management

- of atrial fibrillation. PLOS ONE, 13(1), p.e0191592. doi: https://doi.org/10.1371/journal.pone.0191592.
- Carnicelli, A.P., Hong, H., Connolly, S.J., Eikelboom, J., Giugliano, R.P., Morrow, D.A., Patel, M.R., Wallentin, L., Alexander, J.H., Bahit, M.C., Benz, A.P., Bohula, E.A., Chao, T.-F., Dyal, L., Ezekowitz, M., Fox, K.A., Gencer, B., Halperin, J.L., Hijazi, Z. and Hohnloser, S.H. (2022). Direct Oral Anticoagulants versus Warfarin in Patients with Atrial Fibrillation: Patient-Level Network Meta-Analyses of Randomized Clinical Trials with Interaction Testing by Age and Sex. Circulation, 145(4). doi: https://doi.org/10.1161/circulationaha.121.056355.
- Chao, T.-F., Liu, C.-J., Tuan, T.-C., Chen, S.-J., Wang, K.-L., Lin, Y.-J., Chang, S.-L., Lo, L.-W., Hu, Y.-F., Chen, T.-J., Chiang, C.-E. and Chen, S.-A. (2016). Comparisons of CHADS2 and CHA2DS2-VASc scores for stroke risk stratification in atrial fibrillation: Which scoring system should be used for Asians? Heart Rhythm, 13(1), pp.46–53. doi: https://doi.org/10.1016/j.hrthm.2015.08.017.
- Fauchier, L., Clementy, N., Bisson, A., Ivanes, F., Angoulvant, D., Babuty, D. and Lip, G.Y.H. (2016). Should Atrial Fibrillation Patients with Only 1 Nongender-Related CHA 2 DS 2 -VASc Risk Factor Be Anticoagulated? Stroke, 47(7), pp.1831–1836. doi: https://doi.org/10.1161/strokeaha.116.013253.
- Fong, K.Y., Chan, Y.H., Yeo, C., Lip, G.Y.H. and Tan, V.H. (2023). Systematic Review and Meta-Analysis of Direct Oral Anticoagulants Versus Warfarin in Atrial Fibrillation with Low Stroke Risk. The American Journal of Cardiology, [online] 204, pp.366–376. doi: https://doi.org/10.1016/j.amjcard.2023.07.108.
- Friberg, L., Skeppholm, M. and Terént, A. (2015). Benefit of Anticoagulation Unlikely in Patients with Atrial Fibrillation and a CHA2DS2-VASc Score of 1. Journal of the American College of Cardiology, 65(3), pp.225–232. doi: https://doi.org/10.1016/j.jacc.2014.10.052.
- Go, A.S., Hylek, E.M., Phillips, K.A., Chang, Y., Henault, L.E., Selby, J.V. and Singer, D.E. (2001). Prevalence of Diagnosed Atrial Fibrillation in Adults. JAMA, 285(18), p.2370. doi: https://doi.org/10.1001/jama.285.18.2370.
- Hart, R.G., Pearce, L.A. and Aguilar, M.I. (2007). Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Annals of Internal Medicine, [online] 146(12), pp.857–867. doi: https://doi.org/10.7326/0003-4819-146-12-200706190-00007.
- Hijazi, Z., Oldgren, J., Siegbahn, A. and Wallentin, L. (2017). Application of Biomarkers for Risk Stratification in Patients with Atrial Fibrillation. Clinical Chemistry, 63(1), pp.152–164. doi: https://doi.org/10.1373/clinchem.2016.255182.

- Husam Abdel-Qadir, Singh, S.M., Pang, A., Austin, P.C., Jackevicius, C.A., Tu, K., Dorian, P. and Ko, D.T. (2021). Evaluation of the Risk of Stroke Without Anticoagulation Therapy in Men and Women with Atrial Fibrillation Aged 66 to 74 Years Without Other CHA2DS2-VASc Factors. JAMA Cardiology, 6(8), pp.918–918. doi: https://doi.org/10.1001/jamacardio.2021.1232.
- Jarrah, M.I., Alrabadi, N., Alzoubi, Karem.H., Mhaidat, Q.N. and Hammoudeh, A. (2022). Is there a Concordance between CHA2DS2 VASc and HAS-BLED Scores in Middle Eastern Patients with Nonvalvular AF? Analysis of the Jordan Atrial Fibrillation (JoFib) Study. The Open Cardiovascular Medicine Journal, 16(1). doi: https://doi.org/10.2174/18741924-v16-e2203290.
- Kim, T.-H., Yang, P.-S., Yu, H.T., Jang, E., Uhm, J.-S., Kim, J.-Y., Pak, H.-N., Lee, M.-H., Joung, B. and Lip, G.Y.H. (2018). Age Threshold for Ischemic Stroke Risk in Atrial Fibrillation. Stroke, 49(8), pp.1872–1879. doi: https://doi.org/10.1161/strokeaha.118.021047.
- Lip, G.Y.H., Clementy, N., Pericart, L., Banerjee, A. and Fauchier, L. (2015). Stroke and Major Bleeding Risk in Elderly Patients Aged ≥75 Years with Atrial Fibrillation. Stroke, 46(1), pp.143–150. doi: https://doi.org/10.1161/strokeaha.114.007199.
- Maurizio Paciaroni, Agnelli, G., Falocci, N., Caso, V., Becattini, C., Marcheselli, S., Rueckert, C., Alessandro Pezzini, Poli, L., Padovani, A., Laszló Csiba, Szabó, L., Sohn, S.-I., Tassinari, T., Abdul-Rahim, A.H., Michel, P., Cordier, M., Vanacker, P., Remillard, S. and Alberti, A. (2015). Prognostic value of trans-thoracic echocardiography in patients with acute stroke and atrial fibrillation: findings from the RAF study. Journal of Neurology, 263(2), pp.231–237. doi: https://doi.org/10.1007/s00415-015-7957-3.
- Miyazawa, K., Li, Y.-G., Rashed, W.A., Al Mahmeed, W., Shehab, A., Zubaid, M. and Lip, G.Y.H. (2019). Secondary stroke prevention and guideline adherent antithrombotic treatment in patients with atrial fibrillation: Insights from the Gulf Survey of atrial fibrillation events (Gulf SAFE). International Journal of Cardiology, 274, pp.126–131. doi: https://doi.org/10.1016/j.ijcard.2018.07.120.
- Morseth, B., Geelhoed, B., Linneberg, A., Johansson, L., Kuulasmaa, K., Salomaa, V., Iacoviello, L., Costanzo, S., Söderberg, S., Niiranen, T.J., Vishram-Nielsen, J.K.K., Njølstad, I., Wilsgaard, T., Mathiesen, E.B., Løchen, M.-L., Zeller, T., Blankenberg, S., Ojeda, F.M. and Schnabel, R.B. (2021). Age-specific atrial fibrillation incidence, attributable risk factors and risk of stroke and mortality: results from the MORGAM Consortium. Open Heart, 8(2), p.e001624. doi: https://doi.org/10.1136/openhrt-2021-001624.

- Ocak, G., Khairoun, M., Khairoun, O., Bos, W.J.W., Fu, E.L., Cramer, M.J., Westerink, J., Verhaar, M.C. and Visseren, F.L. (2022). Chronic kidney disease and atrial fibrillation: A dangerous combination. PLOS ONE, 17(4), p.e0266046. doi: https://doi.org/10.1371/journal.pone.0266046.
- Olesen, J.B., Lip, G.Y.H., Hansen, M.L., Hansen, P.R., Tolstrup, J.S., Lindhardsen, J., Selmer, C., Ahlehoff, O., Olsen, A.-M. S., Gislason, G.H. and Torp-Pedersen, C. (2011). Validation of risk stratification schemes for predicting stroke and thromboembolism in patients with atrial fibrillation: nationwide cohort study. BMJ, 342(jan31 1), pp.d124–d124. doi: https://doi.org/10.1136/bmj.d124.
- Quinn, G.R., Severdija, O.N., Chang, Y. and Singer, D.E. (2017). Wide Variation in Reported Rates of Stroke Across Cohorts of Patients with Atrial Fibrillation. Circulation, 135(3), pp.208–219. doi: https://doi.org/10.1161/circulationaha.116.024057.
- Salam, A.M., AlBinali, H.A., Al-Sulaiti, E.M., Al-Mulla, A.W., Singh, R. and Al Suwaidi, J. (2012). Effect of age on treatment, trends and outcome of patients hospitalized with atrial fibrillation: insights from a 20-years registry in a Middle-Eastern country (1991-2010). Aging clinical and experimental research, 24(6), pp.682–90. doi: https://doi.org/10.3275/8757.
- Seiffge, D.J., De Marchis, G.M., Koga, M., Paciaroni, M., Wilson, D., Cappellari, M., Macha, MD, K., Tsivgoulis, G., Ambler, G., Arihiro, S., Bonati, L.H., Bonetti, B., Kallmünzer, B., Muir, K.W., Bovi, P., Gensicke, H., Inoue, M., Schwab, S., Yaghi, S. and Brown, M.M. (2020). Ischemic Stroke despite Oral Anticoagulant Therapy in Patients with Atrial Fibrillation. Annals of Neurology, 87(5), pp.677–687. doi: https://doi.org/10.1002/ana.25700.
- Singer, D.E. (2009). The Net Clinical Benefit of Warfarin Anticoagulation in Atrial Fibrillation. Annals of Internal Medicine, 151(5), p.297. doi: https://doi.org/10.7326/0003-4819-151-5-200909010-00003.
- Singer, D.E., Chang, Y., Borowsky, L.H., Fang, M.C., Pomernacki, N.K., Udaltsova, N., Reynolds, K. and Go, A.S. (2013). A New Risk Scheme to Predict Ischemic Stroke and Other Thromboembolism in Atrial Fibrillation: The ATRIA Study Stroke Risk Score. Journal of the American Heart Association, 2(3). doi: https://doi.org/10.1161/jaha.113.000250.
- Singleton, M.J., Yuan, Y., Dawood, F.Z., Howard, G., Judd, S.E., Zakai, N.A., Howard, V.J., Herrington, D.M., Soliman, E.Z. and Cushman, M. (2021). Multiple Blood Biomarkers and Stroke Risk in Atrial Fibrillation: The REGARDS Study. Journal of the American Heart Association, 10(15). doi: https://doi.org/10.1161/jaha.120.020157.

- Siu, C.-W., Lip, G.Y.H., Lam, K.-F. and Tse, H.-F. (2014). Risk of stroke and intracranial hemorrhage in 9727 Chinese with atrial fibrillation in Hong Kong. Heart Rhythm, 11(8), pp.1401–1408. doi: https://doi.org/10.1016/j.hrthm.2014.04.021.
- Van, I.C., Rienstra, M., Bunting, K.V., Casado-Arroyo, R., Caso, V., Harry, Tom, Dwight, J., Luigina Guasti, Hanke, T., Jaarsma, T., Maddalena Lettino, Maja-Lisa Løchen, R Thomas Lumbers, Maesen, B., Mølgaard, I., Rosano, G.M.C., Sanders, P., Schnabel, R.B. and Suwalski, P. (2024). 2024
- ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). European Heart Journal, 45(36). doi: https://doi.org/10.1093/eurheartj/ehae176.
- Wolf, P.A., Abbott, R.D. and Kannel, W.B. (1991).
 Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 22(8), pp.983–988. doi: https://doi.org/10.1161/01.str.22.8.983.