SAS Journal of Medicine

Abbreviated Key Title: SAS J Med ISSN 2454-5112 Journal homepage: <u>https://saspublishers.com</u> **∂** OPEN ACCESS

Cardiology

Effect of Vitamin D on Clinical Outcomes of Heart Failure: A Prospective Follow-Up Study in Bangladesh

Dr. Mohammad Tajul Islam^{1*}, Dr. Rubyat Hasan Chowdhury², Dr. Mirza Shariful Haque³, Dr. Shahnaz Sharmin⁴, Dr. Ranodhir Chakraborty⁵, Dr. Jubaidul Islam⁶, Dr. Israt Jahan⁷, Dr. Azimunnesa Sheuly⁸, Dr. Tania Sultana⁹ Fariha Chowdhury¹⁰

⁵Registrar, Department of Internal Medicine Unit 1, BIRDEM General Hospital, Dhaka

⁶Assistant Professor, Department of Internal Medicine Unit 3, BIRDEM General Hospital, Dhaka

⁷Registrar, Intensive Care Unit, BIRDEM General Hospital, Dhaka

⁸Assistant Professor, Endocrinology Unit 1, BIRDEM General Hospital, Dhaka

⁹Registrar Cardiology Unit 1, BIRDEM General Hospital, Dhaka

¹⁰Department of Pharmaceutical Sciences, North South University, Dhaka

DOI: https://doi.org/10.36347/sasjm.2025.v11i05.005

*Corresponding author: Dr. Mohammad Tajul Islam

Registrar, Department of Internal Medicine Unit 2, BIRDEM General Hospital, Dhaka

Abstract

Original Research Article

| Received: 29.03.2025 | Accepted: 05.05.2025 | Published: 08.05.2025

Heart failure (HF) remains a leading cause of morbidity and mortality worldwide, serum vitamin D has emerged as a potential regulator of cardiovascular health. This study aimed to evaluate the relationship between serum vitamin D levels and clinical parameters in patients' with heart failure, as well as its influence on clinical outcomes. A prospective, follow-up study on patients of HF at two tertiary cardiac centers of Dhaka, assessing serum vitamin D levels alongside risk factors, clinical characteristics, hospitalization and mortality. Patients were stratified based on vitamin D levels low <20ng/dl) or high (>20ng/dl) to explore potential correlations with serum biomarkers and disease outcome. The mean age in low vitamin D arm (n=48) was 56.37±11.49 vs in high vitamin D arm (n=72) was 54.56±10.11, males consisted of 58.3% & 89.9% in arm A & B. 77.1% vs 77.8% of the patients in low and high vitamin D were non-diabetics, the effect of smoking was significant (p=0.042) within the arms. Serum CRP, BNP, PTH were remarkably higher (p <0.05) in low vitamin D arm moreover, β -blockers and loop diuretics were more frequent (p <0.05). Low serum vitamin D levels exhibited increased hospitalization, hospital stay, adverse effects and mortality (p value<0.001). This study presents a potential association between vitamin D deficiency and corresponding clinical and biochemical profiles in heart failure patients. These findings reinforce the growing hypothesis that vitamin D may play an active role in cardiovascular pathophysiology, potentially influencing disease progression and outcomes.

Keywords: Vitamin D, Heart Failure, Hospitalization, Mortality, BNP, CRP, PTH, Clinical Outcome.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

1.INTRODUCTION

Heart failure (HF) is the terminal pathway for a diverse group of cardiovascular diseases and a leading cause of hospitalization and mortality worldwide. Defined as the heart's inability to pump sufficient blood to meet the metabolic demands of peripheral tissues, HF is not only a progressive and deteriorating condition but also a global public health crisis. Current epidemiological data estimate that over 64 million individuals are living with heart failure globally, with rising prevalence attributed to aging populations,

urbanization, and the growing burden of cardiometabolic risk factors. Despite numerous therapeutic advances in pharmacologic and device-based treatments, the prognosis of HF remains insufficient, with five-year mortality rates comparable to many malignancies. [Tanai E & Frantz S, 2016, Murray CJ *et al.*, 2020, Savarese G & Lund LH, 2017, Benjamin EJ *et al.*, 2019]

The pathophysiology of HF is multifactorial, involving a complex interplay of neurohormonal activation, hemodynamic overload, inflammation, oxidative stress, and adverse cardiac remodeling.

Citation: Mohammad Tajul Islam, Rubyat Hasan Chowdhury, Mirza Shariful Haque, Shahnaz Sharmin, Ranodhir Chakraborti, Jubaidul Islam, Israt Jahan, Azimunnesa Sheuly, Tania Sultana. Effect of Vitamin D on Clinical Outcomes of Heart Failure: A Prospective Follow-Up Study in Bangladesh. SAS J Med, 2025 May 11(5): 403-409.

¹Registrar, Department of Internal Medicine Unit 2, BIRDEM General Hospital, Dhaka ²Assistant Professor, Department of Cardiology Unit 1, BIRDEM General Hospital, Dhaka ³Registrar, Department of Internal Medicine Unit 1, BIRDEM General Hospital, Dhaka ⁴Registrar, Department of Cardiology Unit 1, BIRDEM General Hospital, Dhaka

[Solomon SD *et al.*, 2005] Recently, considerable attention has been drawn to the potential role of micronutrients, particularly vitamin D, in cardiovascular health. Traditionally recognized for its role in calcium-phosphorus homeostasis and skeletal health, vitamin D has emerged as a pivotal regulator of the cardiovascular system, influencing endothelial function, vascular tone, myocardial contractility, and inflammatory responses. [Pilz S *et al.*, 2008, Zittermann A *et al.*, 2007]

Low serum levels of vitamin D is a condition highly prevalent among HF patients which has been consistently associated with increased incidence, severity, and adverse outcomes in heart failure. [Zittermann A et al., 2003, Kim DH et al., 2008] The mechanistic link between hypovitaminosis D and HF is multifaceted. Vitamin D deficiency contributes to myocardial hypertrophy, fibrosis, and impaired contractility through dysregulation of the reninangiotensin-aldosterone system (RAAS), endothelial dysfunction, heightened systemic inflammation, and increased oxidative stress all of which are wellestablished contributors to HF progression. [Artaza JN & Norris KC, 2009, Wang TJ et al., 2008] Additionally, low vitamin D levels impair calcium handling in cardiac myocytes, potentially compromising myocardial performance and physiological stability of electrolytes. [Gouni-Berthold I et al., 2009]

Apart from its close association with disease supplementation development, vitamin D has demonstrated potential cardiovascular benefits by modulating cardiac biomarkers. Several studies have reported favorable effects of vitamin D on markers such as N-terminal pro-brain natriuretic peptide (NTproBNP), high-sensitivity C-reactive protein (hs-CRP), and troponin, suggesting a role for vitamin D not only as a preventive agent but also as an adjunct in the clinical management of HF. [Dalbeni A et al., 2014, Boxer RS et al., 2013] These observations highlight the fascinating possibility that vitamin D status could influence both the pathogenesis and the clinical course of heart failure. In this context, the present study aims to investigate the relationship between vitamin D levels in patients with heart failure, with particular focus on its impact on clinical parameters outcomes. Proper understanding of the association could pave the way for novel preventive and therapeutic strategies targeting an often-overlooked yet modifiable risk factor in cardiovascular disease.

2. MATERIALS AND METHODS

Patient Selection

This prospective observational study was conducted from January 2021 to June 2024 in two tertiary care hospitals in Bangladesh. The study participants were recruited from the Cardiology, Outpatient Department and CCU of Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), as well as the Cardiology Department of Ibrahim Cardiac Hospital & Mohammad Tajul Islam *et al.*, SAS J Med, May, 2025; 11(5): 403-409 Research Institute (ICHRI). Successive patients (age >18 years) diagnosed with HF (ejection fraction <50%) & CAD were included in the study. Patient enrollment was performed between January 2021 and July 2022 to minimize any seasonal variation in vitamin D levels.

Exclusion Criteria:

- 3. Patients with decompensation of HF in the last 4 months, patients with New York Heart Association (NYHA) functional capacity class IV, and patients with atrial fibrillation
- 4. Patients with New York Heart Association (NYHA) functional capacity class IV, and patients with atrial fibrillation
- 5. Patients with a history of gastrectomy, intestinal malabsorption, primary or secondary hyperparathyroidism, any disease relevant to bone metabolism, cancer or chronic kidney disease (eGFR <60 ml/min/1.73 m²)
- 6. Patients using alcohol, exogenous vitamin D, antiepileptic medication or medications with effects on calcium metabolism
- Patients with abnormal liver function (elevated liver enzymes more than three times the upper limit of normal), anemia (<120 g/L in women,
 <130 g/L in men), hyponatremia (<135 mmol/L) in the baseline or follow-up laboratory tests, or deterioration in renal function (>26.5mmol/L increase in creatinine level) during follow-up
- 8. Patients who changed or stopped using their HF medication
- 9. Patients who underwent revascularization procedures.

Purposive sampling technique was used in this study according to the inclusion and exclusion criteria. A group of 150 patients was included in the recruitment period. During follow-up, 30 patients were excluded from the study, and these patients were not included in the statistical analysis of the data. The final study population consisted of 120 patients. Following a subject recruitment, a semi-structured questionnaire specifically developed for this study was used to gather information on their detailed socio-demographic factors, clinical history and previous medical records, which were compiled in a data collection sheet. The questionnaire consisted of questions related to a) socio-demographic characteristics b) behavioral risk factors c) history of preexisting diseases. All relevant investigations were done later and their corresponding results were noted.

Clinical Parameters

All blood and serum samples were collected and stored in sterilized containers. Diabetes mellitus was defined as fasting blood glucose level >7 mmol/L, or the use of insulin or oral hypoglycemic agent. Coronary artery disease was assessed from patients' medical reports. Patient's total history of cardiac events and hospital stay was recorded and current anti-hypertensive

© 2025 SAS Journal of Medicine | Published by SAS Publishers, India

medication was also listed from previous medical records. At presentation, blood samples were collected for routine biochemical tests after 12 hours of fasting and BNP, CRP, PTH levels were measured. Vitamin D levels were measured using the high-performance liquid chromatography method, values <20 nmol/L were considered low and values >20 nmol/L were considered high vitamin D. Patients were classified into two groups based on their vitamin D levels: Arm A with vitamin D levels <20 nmol/L and Arm B with vitamin D levels >20 nmol/L. All participants gave their written informed consent. The study was approved by an institutional ethics committee.

Follow-Up

All the patients were followed up for 2 years or till death. Patients' follow-up data were collected semiannually from patients' medical records, periodic patient examination in the outpatient setting or patient telephone interviews. Events considered were Mohammad Tajul Islam *et al.*, SAS J Med, May, 2025; 11(5): 403-409 hospitalization, duration of hospital stay and overall death. Hospitalization was defined as inpatient treatment for at least one day due to decompansation of HF. Overall deaths were defined as all deaths from any natural cause.

Statistical Analysis

Variables are expressed as frequencies, percentages (%), means (±standard deviation) and medians (interquartile range), as appropriate. Categorical variables were compared by the Pearson Chi-square test. Inter-group comparisons of continuous variables were performed using Student's t-test. All significance tests were two-sided and used p-values of <0.05; those within the 95% confidence interval were considered significant. All analysis was done using Statistical Package for Social Sciences (SPSS) version 26 software.

3. RESULTS

Variable	Low Vit D (≤20 ng/ml) High Vit D (>20 ng/ml		Total	P value
	n=48	n=72	n=120	
Age (years)				
25-35	2 (4.20%)	2 (2.78%)	4 (3.33%)	0.781
35-45	7 (14.58%)	12 (16.67%)	19 (15.83%)	
45-55	15 (31.25%)	29 (40.28%)	44 (36.67%)	
55-65	15 (31.25%)	20 (27.78%)	35 (29.17%)	
>65	9 (18.75%)	9 (12.50%)	18 (15%)	
Mean age (years)	56.37±11.49	54.56±10.11	55.28 ± 10.67	
Gender				
Male	28 (58.33%)	59 (81.94%)	87 (72.50%)	0.005
Female	20 (41.67%)	13 (18.06%)	33 (27.50%)	
Occupation				
Business	13 (27.08%)	15 (20.83%)	28 (23.33%)	0.001
Service	6 (12.50%)	13 (18.06%)	19 (15.83%)	
Day labour	1 (2.08%)	0	1 (0.83%)	
Housewife	19 (39.58%)	12 (16.67%)	31 (25.83%)	
Farmer	2 (4.17%)	24 (33.33%)	26 (21.67%)	
Other	7 (14.58%)	8 (11.11%)	15 (12.50%)	

 Table 1: Sociodemographic characteristics of the study population (n=120)

Table 1 elaborates on the sociodemographic characteristics of 120 patients suffering from heart failure. The majority of the patients belonged to the 45-55 and 55-65 age groups in both arms, where 31.3% of them were in both the 45-55 & 55-55 year age group among low vitamin D arm on the contrary, 40.3% & 27.8% in 45-55 & 55-65 year age group. The mean age

in low vitamin D arm was 56.37 ± 11.49 vs 54.56 ± 10.11 in high vitamin D arm. Mean age was 55.28 ± 10.67 years, fraction of male was higher in both arms of low & high vitamin D bearing 58.3% & 89.9% patients. While a large proportion of low vitamin D patients were housewives (39.5%), farmers comprised of greater percentage in the high vitamin D arm.

Mohammad Tajul Islam et al., SAS J Med, May, 2025; 11(5): 403-409

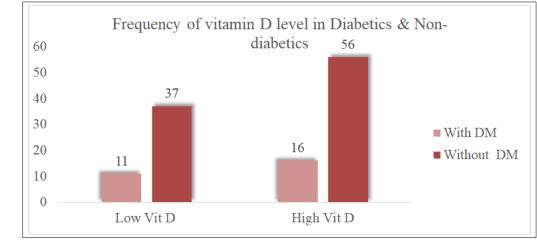


Figure 1: Fraction of participants with or without diabetes mellitus having low or high serum vitamin D levels.

The figure 1 illustrates the distribution of patients with or without diabetes mellitus within the two arms of low & high vitamin D. It is noticed that among patients with low vitamin D, 11 (22.9%) and 37 (77.1%)

of the patients were diabetics & non-diabetics respectively. On the contrary, 16 (22.2%) and 56 (77.8%) of them were with and without DM within the high vitamin D group.

Table 2: Etiological	narameters and o	clinical manifestati	ion of the n	opulation (n=120)
Tuble It Ettological	parameters and v	chillen mannestat	on or ene p	opulation (n 120)

Variable	Low Vit D	High Vit D	P value	RR
	n=48	n=72		
Etiological factors				
Smoking	26 (54.2%)	52 (72.2%)	0.042	0.455 (0.211-0.979)
Dyslipidemia	20 (41.7%)	36 (50%)	0.370	0.714 (0.342-1.492)
Sedentary lifestyle	36 (75%)	46 (63.9%)	0.200	1.696 (0.753-3.816)
Family history of IHD	19 (39.6%)	34 (47.2%)	0.409	0.732 (0.349-1.536)
Obesity	16 (33.3%)	27 (37.5%)	0.641	0.833 (0.387-1.794)
Clinical manifestations				
Chest pain	48 (100%)	72 (100%)		
Breathlessness	43 (89.6%)	57 (79.2%)	0.134	2.263 (0.763-6.710)
Palpitation	16 (33.3%)	17 (23.6%)	0.243	1.618 (0.720-3.636)

Table 2 shows the various etiological factors and clinical symptoms of HF. Significant effect of smoking (p = 0.042) was evident within the two arms, in addition, dyslipidemia (41.7% and 50%) & sedentary lifestyle (75% and 63.9%) were also prominent risk factors among the patients with HF.

Chest pain was common among all patients and breathlessness was observed in 89.6% in arm A and 79.2% in arm B.

Table 3: Clinical	characteristics	of the population	based on vitamin	n D levels (n=120)
Table 0. Chinea	character istics	or the population	basea on vitanni	

Variable	Low Vit D (≤20 ng/ml)	High Vit D (>20 ng/ml)	P value
	n=48	n=72	
TC (mg/dl)	190.88 ± 53.20	189.18 ± 48.91	0.858
TG (mg/dl)	158.06 ± 88.16	159.10 ± 106.78	0.956
HDL (mg/dl)	38.98 ± 5.53	38.11 ± 6.26	0.437
LDL (mg/dl)	120.81 ± 40.66	118.81 ± 39.52	0.788
Troponin I	21.14 ± 17.32	17.98 ± 16.96	0.324
HTN	16 (33.3%)	20 (27.8%)	0.515
CRP (nmol/L)	51.03 ± 9.50	35.85 ± 8.45	0.01*
BNP (ng/L)	85 ± 11.04	47 ± 6.97	<0.001*
PTH (ng/L)	68 ± 7.56	52 ± 5.65	<0.001*
β-blocker	40 (83.3%)	49 (68.1%)	0.006*
Loop diuretics	41 (85.4%)	53 (73.6%)	0.048*

Results of the biochemical parameters revealed that triglyceride and LDL levels are slightly elevated whereas HDL values are lowered within the two arms in Table 3. Arm a demonstrated significantly elevated CRP, Mohammad Tajul Islam *et al.*, SAS J Med, May, 2025; 11(5): 403-409 BNP, and PTH compared to Arm B (p < 0.05 for all). A comparison of treatment approaches between the groups revealed that β -blockers (p = 0.006) and loop diuretics (p = 0.048) were utilized more frequently in Arm A.

Variable	Low Vit D (≤20 ng/ml)	High Vit D (>20 ng/ml)	P value
	n=48	n=72	
Cardiogenic shock	21 (43.8%)	23 (31.9%)	0.189
Arrythmia	10 (20.8%)	9 (12.5%)	0.221
Hospitalization	11 (22.9%)	3 (4.2%)	0.002*
Mean hospital stay	10.07 ± 1.91	2.17 ± 1.45	<0.001*
Overall death	8 (16.7%)	2 (2.7%)	<0.001*
Adverse effects	15 (31.3%)	6 (8.3%)	<0.001*

Table 4: Cardiac risk factors,	hospitalization and mortalit	v of the patients (n=120)
		<i>y</i> == === <i>y</i> === = <i>y</i>

As shown in Table 4, the incidence of cardiogenic shock was higher (43.8%) among participants, of arm A. Additionally, hospitalization rates in arm A with 22.9% (n=11) against 4.2% in arm B (n=3) were significantly elevated in the lower vitamin D group in addition, the average duration of hospital stay was remarkably higher in arm A both with a p-value of <0.05. Moreover, both mortality and adverse events were notably more frequent in arm A.

4. DISCUSSION

This prospective, observational, follow-up study was conducted over a period of three and a half years at two renowned, specialized cardiac institutions in Dhaka namely BIRDEM and Ibrahim Cardiac Hospital & Research Institute. The primary objective of this study was to observe the effect of serum vitamin D levels on the patients of HF. Furthermore, the impact on clinical parameters, hospitalization and mortality was also assessed in this study.

Our findings indicate that HF was more prevalent among the elderly population, especially among the age groups of 55-65 years and 45-55 years. These two age classes collectively represent more than half of the population. The mean age in low vitamin D arm in our study was 56.37 ± 11.49 years while 54.56 ± 10.11 years in high vitamin D arm, homogenously the mean age was 56.2 ± 6 years in vitamin D insufficient against 54.4 ± 9 years in vitamin D sufficient group in a similar study. Male domination was evident in our research particularly in the high vitamin D arm (90%) which is consistent with the aforementioned study. [Lopes MR *et al.*, 2014] Most of the vitamin D insufficient patents were housewives whereas vitamin D sufficient ones were farmers.

A lion's share of patients were non-diabetic (70%) within both the arms according to our results harmonious to that of previous studies with half of the population without DM. [Lopes MR *et al.*, 2014, Gotsman I *et al.*, 2012] Between the two arms effect of smoking as an etiological factor was statistically significant (p=0.042) moreover, sedentary lifestyle along

with dyslipidemia were notable threats of concern in both the arms according to this research. Widespread presence of sedentary lifestyle was observed among low vitamin D patients is in line with prospective tertiary center studies. [Anderson JL *et al.*, 2010, Ding N *et al.*, 2022] The most prominent symptoms of HF was found to be chest pain and breathlessness, a fraction of patients had suffered from cardiogenic shock with a higher percentage in arm B.

Heart failure is a progressive and chronic condition that typically develops over an extended period, which may explain its higher prevalence among older adults. Age-related physiological changes, combined with the cumulative burden of cardiovascular risk factors, contribute to the increased susceptibility of this population to HF. Males are more prone to attend the hospital and hence timely diagnosed with chronic conditions like HF, women on the other hand, tend to hesitate to express their initial symptoms until later stage. Additionally, lifestyle habits such as smoking were found to be less prevalent among female participants, which may partially mitigate their cardiovascular risk compared to men. Furthermore, a significant proportion of patients with vitamin D insufficiency were identified as housewives, whereas those with sufficient vitamin D levels were predominantly engaged in farming. This finding highlights the crucial role of occupational sunlight exposure in the endogenous synthesis of vitamin D, particularly in regions where outdoor labor correlates strongly with higher serum vitamin D levels.

Moreover, the occupational distribution suggested that a large number of patients seeking care at the hospital may belong to lower socioeconomic backgrounds, which might also explain the relatively low prevalence of diabetes in the studied cohort. Nevertheless, sedentary lifestyles were widespread, and a considerable subset of patients exhibited dyslipidemia. Smoking was notably prevalent in this population, representing a significant modifiable risk factor that could exacerbate the progression of heart failure.

In our study, patients with lower serum vitamin significantly D levels demonstrated elevated concentrations of brain natriuretic peptide (BNP), Creactive protein (CRP), and parathyroid hormone (PTH). Furthermore, the use of β -blockers and loop diuretics was notably more frequent in this group, likely reflecting a more advanced stage of heart failure and greater symptom burden. These patients also experienced a markedly higher rate and extended duration of hospitalization, alongside an increased incidence of mortality and adverse events. Vitamin D deficiency is associated with dysregulation of the renin-angiotensinaldosterone system (RAAS), impaired myocardial contractility, and endothelial dysfunction, all of which can exacerbate heart failure (HF) progression. Elevated BNP levels may suggest worsened cardiac wall stress, while increased CRP reflects underlying systemic inflammation both of which are amplified in vitamin D insufficiency. High PTH levels may result from secondary hyperparathyroidism induced by vitamin D deficiency, further contributing to myocardial remodeling and dysfunction. [Ustundag Y et al., 2024, Islam H et al., 2024, Islam H et al., 2024] Additionally, lower vitamin D levels are linked to reduced exercise tolerance and increased fluid retention, potentially explaining the greater reliance on β-blockers and diuretics. The cumulative effect of these physiological disruptions likely accounts for the higher morbidity, hospitalization rates, and mortality observed in the low vitamin D group. [Mann MC, 2015] The study also demonstrated that patients with vitamin D deficiency tended to experience longer hospital stays and higher mortality rates, reinforcing the potential link between suboptimal vitamin D status and adverse clinical outcomes in heart failure. Given the widespread prevalence of vitamin D deficiency and its observed association with poorer outcomes, routine assessment and correction of vitamin D levels as well as benefits of vitamin supplementation should be considered as part of a comprehensive management strategy for heart failure. Further prospective studies are warranted to clarify the role of vitamin D optimization in improving long-term outcomes in this vulnerable population.

Limitations

This study acknowledges numerous factors that may restrict its impact. The inadequate sample size and lack of control group limits establishment of a causal relationship. The type of sampling may also lead to selection bias. Lack of proper follow-up and survival data restricts the scope of this this study. Future longitudinal and interventional studies are required to explore whether vitamin D supplementation could confer clinical benefits in HF management.

CONCLUSION

The findings of this prospective study highlights a significant association between low serum vitamin D and BNP, CRP, PTH levels in patients with heart failure. Vitamin D insufficiency was correlated

© 2025 SAS Journal of Medicine | Published by SAS Publishers, India

Mohammad Tajul Islam et al., SAS J Med, May, 2025; 11(5): 403-409

with multiple hospitalizations, prolonged hospital stays, and elevated mortality rates. These observations suggest that suboptimal vitamin D status may serve as a modifiable risk factor that could influence both the clinical course and prognosis of heart failure patients. Further large-scale, randomized controlled trials are required to confirm whether vitamin D supplementation can improve morbidity and mortality outcomes in this patient population.

Conflict of Interest: The authors declare no conflict of interest.

Abbreviations

BNP: b-type natriuretic peptide CAD: Coronary artery disease CRP: C-reactive protein DM: diabetes mellitus HDL: High density lipoprotein HF: Heart Failure HS: Hospital stay hs-CRP: high-sensitivity C-reactive protein HTN: Hypertension IHD: Ischemic heart disease LDL: Low density lipoprotein NT-proBNP: N-terminal pro-brain natriuretic peptide PTH: parathyroid hormone. B RAAS: renin-angiotensin-aldosterone system TC: Total Cholesterol TG: Triglyceride

5. REFERENCES

- Anderson, J. L., May, H. T., Horne, B. D., Bair, T. L., Hall, N. L., Carlquist, J. F., ... & Intermountain Heart Collaborative (IHC) Study Group. (2010). Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. The American Journal of Cardiology, 106(7), 963–968. https://doi.org/10.1016/j.amjcard.2010.05.027
- Artaza, J. N., & Norris, K. C. (2009). Vitamin D and cardiovascular disease. International Journal of Cardiology, 132(2), 143–149. https://doi.org/10.1016/j.ijcard.2008.06.056
- Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., ... & Virani, S. S. (2019). Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation, 139(10), e56–e528. https://doi.org/10.1161/CIR.000000000000659
- Boxer, R. S., Kenny, A. M., Schmotzer, B. J., Vest, M., Fiutem, J., Piña, I. L., & Cahalin, L. P. (2013). Vitamin D supplementation in heart failure: A randomized, double-blind, placebo-controlled trial. American Heart Journal, 166(2), 250–256. https://doi.org/10.1016/j.ahj.2013.04.015
- Dalbeni, A., Scaturro, G., Degan, M., Minuz, P., & Delva, P. (2014). Effects of six months of vitamin D supplementation in patients with heart failure: A

randomized double-blind controlled trial. Nutrients, 6(11), 5097–5107. https://doi.org/10.3390/nu6115097

- https://doi.org/10.3390/nu6115097
- Ding, N., Shah, A. M., Blaha, M. J., Chang, P. P., Rosamond, W. D., & Matsushita, K. (2022). Cigarette smoking, cessation, and risk of heart failure with preserved and reduced ejection fraction. Journal of the American College of Cardiology, 79(23), 2298–2305. https://doi.org/10.1016/j.jacc.2022.04.007
- Gotsman, I., Shauer, A., Zwas, D. R., Hellman, Y., Keren, A., Lotan, C., & Admon, D. (2012). Vitamin D deficiency is a predictor of reduced survival in patients with heart failure; vitamin D supplementation improves outcome. European Journal of Heart Failure, 14(4), 357–366. https://doi.org/10.1093/eurjhf/hfs064
- Gouni-Berthold, I., Krone, W., & Berthold, H. K. (2009). Vitamin D and cardiovascular disease. Current Vascular Pharmacology, 7(3), 414–422. https://doi.org/10.2174/157016109788340834
- Islam, H., Hassaan, S. M., Islam, R., Islam, T., Zaidi, F., Rehman, H. U., ... & Ahmad, I. (2024). Vitamin D's role in cardiovascular diseases. Discovery Medicine, 36(189), 1973–1986.
- Kim, D. H., Sabour, S., Sagar, U. N., Adams, S., & Whellan, D. J. (2008). Prevalence of hypovitaminosis D in cardiovascular diseases (from the National Health and Nutrition Examination Survey 2001 to 2004). The American Journal of Cardiology, 102(11), 1540–1544. https://doi.org/10.1016/j.amjcard.2008.06.067
- Lopes, M. R., Ribeiro, P. A., Ledur, P., Souza, G. C., Clausell, N., & Schaan, B. D. (2014). Vitamin D insufficiency is associated with lower physical function in patients with heart failure and diabetes. Journal of Diabetes Research, 2014, 320930. https://doi.org/10.1155/2014/320930
- Mann, M. C. (2015). Vitamin D and cardiac autonomic tone: Cardiovascular implications in humans with and without chronic kidney disease.
- Murray, C. J., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., ... & GBD 2019 Risk Factors Collaborators. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258), 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2

Mohammad Tajul Islam et al., SAS J Med, May, 2025; 11(5): 403-409

- Pilz, S., März, W., Wellnitz, B., Seelhorst, U., Fahrleitner-Pammer, A., Dimai, H. P., ... & Dobnig, H. (2008). Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. The Journal of Clinical Endocrinology & Metabolism, 93(10), 3927–3935. https://doi.org/10.1210/jc.2008-0784
- Savarese, G., & Lund, L. H. (2017). Global public health burden of heart failure. Cardiac Failure Review, 3(1), 7–11. https://doi.org/10.15420/cfr.2016:25:2
- Schierbeck, L. L., Jensen, T. S., Bang, U., Jensen, G., Køber, L., & Jensen, J. E. (2011). Parathyroid hormone and vitamin D—Markers for cardiovascular and all-cause mortality in heart failure. European Journal of Heart Failure, 13(6), 626–632. https://doi.org/10.1093/eurjhf/hfr034
- Solomon, S. D., McMurray, J. J., Pfeffer, M. A., Wittes, J., Fowler, R., Finn, P., ... & Bertagnolli, M. (2005). Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. New England Journal of Medicine, 352(11), 1071–1080. https://doi.org/10.1056/NEJMoa050405
- Tanai, E., & Frantz, S. (2016). Pathophysiology of heart failure. Comprehensive Physiology, 6(1), 187– 214. https://doi.org/10.1002/cphy.c140055
- Ustundag, Y., Demir, C., & Demir, M. (2024). The relationship between serum vitamin D levels and hematological inflammatory indices in patients with heart failure.
- Wang, T. J., Pencina, M. J., Booth, S. L., Jacques, P. F., Ingelsson, E., Lanier, K., ... & Vasan, R. S. (2008). Vitamin D deficiency and risk of cardiovascular disease. Circulation, 117(4), 503– 511.

https://doi.org/10.1161/CIRCULATIONAHA.107.7 06127

- Zittermann, A., Schleithoff, S. S., & Koerfer, R. (2007). Vitamin D and vascular calcification. Current Opinion in Lipidology, 18(1), 41–46. https://doi.org/10.1097/MOL.0b013e328011c6fb
- Zittermann, A., Schleithoff, S. S., Tenderich, G., Berthold, H. K., Körfer, R., & Stehle, P. (2003). Low vitamin D status: A contributing factor in the pathogenesis of congestive heart failure? Journal of the American College of Cardiology, 41(1), 105– 112. https://doi.org/10.1016/S0735-1097(02)02624-4.