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Abstract  Original Research Article 

 

AI-based forecasting models have revolutionized industries, enabling efficient operations and enhanced sustainability. 

However, understanding their comparative performance across multiple domains remains underexplored. This study 

evaluates AI-based forecasting models' performance in smart manufacturing, inventory planning, and sustainability 

trends, focusing on accuracy, stability, and domain-specific applicability. Conducted at Lamar University, USA, this 

research spanned from January 2023 to June 2024. The study sample consisted of 42 data sets derived from smart 

manufacturing systems, inventory usage, and sustainability trends. Machine learning algorithms, including Random 

Forest, LSTM, and Support Vector Machines (SVM), were applied for forecasting power consumption, raw material 

demand, and sustainable behavior shifts. The models were evaluated using accuracy, standard deviation, p-values, Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), and Time Series Performance Metrics. The results 

highlighted that the Hybrid LSTM model for smart manufacturing (power consumption) achieved the highest accuracy 

of 97.6%, a low standard deviation of 0.03, and a p-value of 0.002, indicating statistical significance. The MAE and 

RMSE for this model were 0.15 and 0.22, respectively. In inventory planning, the Random Forest model provided a 

robust forecast with an accuracy of 92.4%, standard deviation of 0.05, and a p-value of 0.01. The model's MAE was 

0.12 and RMSE 0.18, demonstrating its reliability. For sustainability trend forecasting using social signals, the SVM 

model achieved an accuracy of 85.8%, a standard deviation of 0.07, and a p-value of 0.04. The MAE was 0.25, and 

RMSE 0.30. The analysis revealed that, while LSTM models performed best for time-series and continuous data 

(manufacturing), Random Forest models excelled in discrete demand forecasting, and SVM models were more suited 

for signal-based, nontraditional data forecasting. AI models significantly enhance predictive accuracy in smart 

manufacturing, inventory planning, and sustainability. This study provides insights into selecting the most suitable 

models for specific forecasting needs, aiding industries transitioning to AI-driven systems. 

Keywords: AI Forecasting, Smart Manufacturing, Inventory Planning, Sustainability Trends, Model Comparison. 
Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 
author and source are credited. 

 

INTRODUCTION 
In the rapidly evolving world of modern 

industries, the integration of Artificial Intelligence (AI) 

with forecasting models has fundamentally altered the 

way businesses approach planning, optimization, and 

sustainability [1]. AI-driven forecasting models are 

transforming sectors such as smart manufacturing, 

inventory management, and sustainability by offering 

high levels of precision, adaptability, and real-time 

decision-making support. These domains share the need 

for accurate and reliable predictions, enabling 

organizations to optimize operational efficiency, reduce 

waste, and ensure long-term sustainability [2].  

 

AI in Smart Manufacturing 

Smart manufacturing, or Industry 4.0, 

represents a paradigm shift in manufacturing processes, 

driven by technologies such as the Internet of Things 

(IoT), big data analytics, and AI. Among these 

technologies, AI, particularly deep learning models, has 

proven to be a key enabler of predictive maintenance, 

production optimization, and energy efficiency. AI-

based forecasting models, including Long Short-Term 
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Memory (LSTM) networks, Random Forest, and 

Support Vector Machines (SVM), have shown promise 

in predicting machine failures, forecasting power 

consumption, and optimizing manufacturing schedules. 

A significant application of AI in smart manufacturing is 

predictive maintenance. Predictive maintenance uses 

historical sensor data to forecast when equipment will 

fail, enabling businesses to perform maintenance before 

failures occur. According to a study by Fan et al., 

predictive maintenance has been greatly enhanced by 

deep learning algorithms, particularly LSTM networks, 

which excel at analyzing time-series data [3]. The 

authors showed that LSTM networks could accurately 

predict machine failures based on vibration and 

temperature data, achieving higher predictive accuracy 

than traditional statistical methods such as ARIMA. 

Similarly, Slowik et al., found that deep learning 

techniques, particularly convolutional neural networks 

(CNNs) and LSTM, outperformed classical machine 

learning models in power consumption prediction and 

equipment maintenance, leading to reduced downtime 

and improved operational efficiency [4]. Moreover, 

Sipila et al., found that AI-driven forecasting models are 

critical in energy optimization within manufacturing 

facilities [5]. Their study emphasized the use of machine 

learning models, such as Random Forest and LSTM, for 

predicting energy consumption patterns in 

manufacturing environments. By utilizing real-time 

sensor data, these models can forecast energy usage, 

allowing businesses to make proactive adjustments to 

minimize energy wastage. A similar study argued that 

the ability to forecast power consumption accurately 

plays a pivotal role in reducing operational costs and 

enhancing overall energy efficiency in manufacturing 

operations. Despite the clear advantages of AI-based 

models in smart manufacturing, Slowik et al., noted that 

these systems are still plagued by several challenges [4]. 

First, the quality and consistency of sensor data are 

critical to the success of AI models. Inaccurate or 

incomplete data can lead to unreliable predictions. 

Additionally, the integration of AI forecasting models 

with existing manufacturing systems requires substantial 

investments in infrastructure and training, which may be 

a barrier for smaller firms. 

 

AI in Inventory Planning and Supply Chain 

Management 

In inventory planning and supply chain 

management, accurate demand forecasting is vital for 

optimizing stock levels, reducing costs, and ensuring 

timely deliveries. AI-based forecasting models have 

gained prominence in this area due to their ability to 

integrate various data sources, including historical sales 

data, market trends, and external factors like weather 

patterns and economic indicators. Random Forest and 

SVM models have shown considerable promise in 

predicting demand and optimizing inventory levels. 

Random Forest, a powerful ensemble learning method, 

has been widely applied in inventory forecasting. 

According to Panda et al., Random Forest excels at 

handling large, complex datasets with multiple features 

and non-linear relationships [6]. Their study 

demonstrated that Random Forest outperforms 

traditional models like moving averages and exponential 

smoothing in demand forecasting. By considering a 

broader range of input variables, including customer 

preferences, lead times, and seasonal fluctuations, 

Random Forest models can provide more accurate and 

reliable forecasts. A similar study corroborated these 

findings, highlighting Random Forest's flexibility in 

handling both categorical and numerical data for 

inventory optimization. SVM, another machine learning 

technique, has been extensively applied to forecast 

discrete demand in inventory systems. Pasupuleti et al., 

examined the application of SVM in forecasting demand 

for raw materials in manufacturing environments, 

finding that SVM outperformed other methods in terms 

of both predictive accuracy and computational efficiency 

[7]. SVM is particularly effective when dealing with 

smaller datasets and non-linear relationships between 

variables, making it ideal for demand forecasting in 

inventory management. However, a similar study 

highlighted the challenge of selecting the appropriate 

kernel function for SVM, which requires domain-

specific knowledge to ensure optimal performance. 

Despite the advantages of AI-based forecasting models, 

Wang et al., noted that there are limitations to their 

widespread adoption [8]. One challenge is the need for 

large, high-quality datasets. In many cases, historical 

data may not be sufficient to capture the full complexity 

of demand fluctuations, particularly in highly volatile 

markets. Furthermore, AI models require significant 

computational power, making them resource-intensive, 

which may be a barrier for smaller businesses with 

limited IT infrastructure. 

 

AI in Sustainability Trend Forecasting 

AI models are increasingly being applied to 

predict and analyze sustainability trends, particularly by 

leveraging social signals such as social media activity, 

search engine trends, and online consumer behavior. The 

growing interest in sustainability, driven by consumer 

preferences for eco-friendly products, regulatory 

changes, and climate concerns, has led to an increased 

need for models capable of forecasting sustainability-

related behavior and demand. Social media platforms, 

such as Twitter and Google Trends, provide valuable 

data for predicting shifts in sustainability trends. Jaiswal 

et al., used AI models to analyze social media signals to 

forecast public sentiment and behavior changes related 

to sustainable consumption [9]. Their study showed that 

SVM was particularly effective in predicting shifts in 

consumer attitudes toward green products, based on 

fluctuations in online mentions of sustainability-related 

keywords. This aligns with the findings of Wang et al., 

who demonstrated that AI-based models are adept at 

predicting consumer behavior by analyzing social signals 

from platforms like Twitter [8]. By incorporating real-

time data from social media platforms, AI models can 

forecast changes in consumer demand for sustainable 
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products, helping businesses adapt their marketing 

strategies and inventory management. Moreover, 

Nabipour et al., explored the use of LSTM networks to 

forecast sustainability trends based on online data [10]. 

They found that LSTM could accurately predict future 

trends in green consumption by analyzing historical 

social media posts and environmental news. The ability 

of LSTM to handle sequential data made it particularly 

well-suited to capturing long-term trends in public 

sentiment toward sustainability. However, as Fan et al., 

pointed out, the use of social media data for sustainability 

forecasting is fraught with challenges [3]. The primary 

issue lies in the noise inherent in social media data, where 

irrelevant or inaccurate posts can distort predictions. 

Additionally, the rapid evolution of online trends makes 

it difficult to build reliable long-term forecasting models. 

Despite these challenges, the integration of AI in 

sustainability forecasting holds promise for businesses 

looking to stay ahead of sustainability trends and align 

their strategies with consumer demand. 

 

Comparative Performance of AI Models 

The comparative performance of AI-based 

forecasting models across different domains is a crucial 

aspect of this research. While each AI model has 

demonstrated strengths in particular applications, the 

choice of model largely depends on the nature of the data 

and the forecasting task at hand. LSTM has been shown 

to excel in time-series forecasting, especially in smart 

manufacturing, where continuous sensor data can be 

leveraged to predict power consumption and machine 

failures. On the other hand, Random Forest is more 

suitable for discrete forecasting tasks, such as inventory 

planning, where historical sales and stock data are used 

to predict demand. SVM, while not as versatile as LSTM 

or Random Forest, has proven highly effective in 

predicting sustainability trends based on social signals, 

where unstructured, sparse data is prevalent. 

Comparative studies, such as those by Ali et al., 

consistently highlight the strengths and weaknesses of 

these models across different domains [11]. While 

LSTM is ideal for time-series data, Random Forest's 

ability to handle complex datasets with non-linear 

relationships makes it particularly effective for inventory 

planning. SVM, despite its lower overall performance in 

terms of accuracy, has proven to be a strong contender in 

sustainability forecasting, particularly in handling non-

traditional data sources like social signals. 

 

MATERIAL AND METHODS 
Study Design 

This research was designed as a multi-domain 

comparative study aimed at evaluating the performance 

of AI-based forecasting models across three distinct 

sectors: smart manufacturing, inventory planning, and 

sustainability trends. The study was conducted at Lamar 

University, USA, over a period from January 2023 to 

June 2024. The primary focus was to assess the accuracy, 

stability, and practical applicability of three popular AI 

models: Random Forest, Long Short-Term Memory 

(LSTM) networks, and Support Vector Machines 

(SVM). Each model was applied to different forecasting 

tasks: predicting power consumption in smart 

manufacturing environments, predicting raw material 

demand for inventory planning, and forecasting shifts in 

sustainability trends based on social signals such as 

Google Trends and Twitter mentions. The research 

aimed to identify which models performed best in each 

of these domains, providing insights into their relative 

strengths and weaknesses, as well as recommendations 

for industries seeking to transition to AI-driven 

predictive systems. The study followed a structured 

approach, starting with the collection of data from 

relevant sources in each domain. Smart manufacturing 

data were derived from real-time sensors monitoring 

equipment and energy use in factory environments. 

Inventory planning data were sourced from historical 

sales and stock levels in enterprise resource planning 

(ERP) systems. Sustainability trend data were extracted 

from social media platforms and search engine analytics, 

capturing public sentiment around sustainability topics. 

Each data set was cleaned and processed to ensure 

reliability before being used for training and testing AI 

models. 

 

Inclusion Criteria 

The inclusion criteria for the study were 

designed to ensure that only reliable, complete, and 

relevant data were used in the analysis. The data sets 

included in the study were required to meet several key 

conditions. First, they must come from active systems—

smart manufacturing sensors, ERP systems, and social 

media platforms that provide real-time data or have at 

least six months of historical data. This ensured that the 

models would be able to generate accurate forecasts 

based on reliable, time-sensitive data. Additionally, only 

data sets that were sufficiently granular, with clear time-

based structures, were included. For example, in smart 

manufacturing, only data from fully operational 

machines with consistent data inputs were considered, 

while inventory data needed to have detailed daily or 

weekly records to allow for accurate demand forecasting. 

Sustainability trend data had to contain time-based 

information, such as monthly or weekly mentions of 

green topics or environmental behavior on platforms like 

Google Trends or Twitter. 

 

Exclusion Criteria 

Data sets that did not meet the necessary 

requirements for completeness and relevance were 

excluded from the study. Any data sets with missing 

values, anomalies, or discrepancies, particularly those 

with gaps in time-series data, were excluded to avoid 

skewing the results. In smart manufacturing, data from 

faulty sensors or machines that experienced irregular 

operation were discarded. Similarly, inventory data sets 

that lacked consistency in terms of historical demand or 

stock levels, as well as data with inconsistencies in time-

stamping or data entry errors, were excluded. For 

sustainability trends, only those datasets with 



 
 

 

 

 

 

 

Sufi Nusrat Quader et al, Sch J Eng Tech, Oct, 2025; 13(10): 845-854 

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          848 

 

 

 

 

inconsistent or missing data, such as incomplete 

mentions or mismatched time periods, were excluded. 

Exclusion of unreliable data ensured the integrity and 

accuracy of the results. 

 

Data Collection 

The data collection process was segmented 

based on each application domain. For smart 

manufacturing, data were gathered from sensor networks 

installed in production facilities, capturing metrics such 

as power consumption, temperature, and operational 

status. These data were collected at regular intervals and 

preprocessed for noise reduction and consistency. 

Inventory data were sourced from ERP systems used by 

companies to track stock levels and sales patterns. This 

data, which included daily and weekly records of raw 

material usage and product demand, was cleaned and 

standardized for use in training the AI models. For 

sustainability trend analysis, data were extracted from 

social media platforms, particularly Google Trends and 

Twitter, to track public interest in sustainability-related 

topics. These platforms provided time-series data that 

were processed to identify trends in consumer behavior, 

such as rising demand for green products or shifts in 

environmental priorities. 

 

Data Analysis 

The collected data were analyzed using SPSS 

version 26.0, a robust statistical software package 

commonly used in predictive modeling and data analysis. 

Descriptive statistics were used to calculate the mean, 

standard deviation, and percentage distribution of the 

data across the different forecasting models. This 

allowed the study to gauge the overall performance of 

each AI model in each domain. Inferential statistics, 

including p-values, were calculated to assess the 

statistical significance of the differences between the 

models' performances. The models were evaluated based 

on several key metrics, such as predictive accuracy, 

Mean Absolute Error (MAE), and Root Mean Squared 

Error (RMSE). These metrics provided insights into how 

well each model could forecast real-world data. The p-

value was used to test the null hypothesis, indicating 

whether any observed differences in model performance 

were due to chance. A p-value of less than 0.05 was 

considered statistically significant, providing confidence 

in the robustness of the results. 

 

Procedure 

This study followed a structured and systematic 

procedure to evaluate the performance of AI-based 

forecasting models across three domains: smart 

manufacturing, inventory planning, and sustainability 

trends. 

 

Data Preprocessing 

Initially, the data were preprocessed to handle 

missing values, noise, and inconsistencies. For smart 

manufacturing, sensor data were aggregated into time-

series formats, which are essential for temporal 

forecasting models. In inventory planning, historical 

sales data were compiled, cleaned, and normalized to 

prepare them for machine learning algorithms. 

Sustainability data, collected from social signals such as 

Google Trends and Twitter mentions, were aligned with 

temporal trends to capture shifts in public sentiment. 

 

Data Splitting and Model Training 

Once the data were cleaned and processed, they 

were divided into training and testing sets. The training 

data were used to teach the models, while the testing data 

served to evaluate the models' predictive performance. 

AI models, including Long Short-Term Memory 

(LSTM) networks, Random Forest, and Support Vector 

Machines (SVM), were chosen for their suitability in 

handling different forecasting tasks. These models were 

trained to predict various outcomes: power consumption 

for smart manufacturing, raw material demand for 

inventory planning, and sustainability trends for social 

signal analysis. 

 

Model Evaluation 

The models were evaluated based on their 

predictive accuracy, stability, and other relevant 

performance metrics, such as Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE). 

Statistical tests, including p-value assessments, were 

conducted to compare the performance of the models 

across the three domains. This approach allowed for a 

clear identification of the most reliable forecasting model 

for each type of data and domain. 

 

Ethical Considerations 

The study adhered to ethical guidelines for 

research involving data collection and analysis. Ethical 

approval was granted by the institutional review board 

(IRB) at Lamar University. The data collected for the 

study were anonymized, ensuring that no personal 

information was linked to the data sets used for analysis. 

Data from social media and public sources were 

collected in accordance with platform guidelines, and no 

personal identifiers were included. The research team 

followed best practices for data privacy and ensured that 

all data were stored securely. The study aimed to 

minimize any potential harm or privacy concerns 

associated with the use of public or industrial data. 

 

RESULTS 
The results of this study were derived from the 

evaluation of AI-based forecasting models across three 

key application areas: smart manufacturing, inventory 

planning, and sustainability trends. The models 

compared included Random Forest, Long Short-Term 

Memory (LSTM) networks, and Support Vector 

Machines (SVM). Data from 42 different datasets were 

used to assess the performance of each model on the 

specified tasks. The evaluation was based on several 

metrics, including accuracy, Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), standard 
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deviation, and p-values, with a focus on identifying 

statistical significance across domains. 

 

 
Figure 1: Model Performance in Smart Manufacturing Forecasting (Power Consumption) 

 

The LSTM model demonstrated the highest 

predictive accuracy for power consumption forecasting 

in smart manufacturing, with an accuracy of 97.6%. The 

low MAE (0.15) and RMSE (0.22) further confirmed its 

robust performance. Statistical analysis revealed a 

significant difference between the LSTM and other 

models, with a p-value of 0.002, indicating that the 

LSTM model significantly outperformed both Random 

Forest and SVM models. The standard deviation of 0.03 

shows minimal variability, highlighting the model's 

stability. 

 

 
Figure 2: Model Performance in Inventory Planning Forecasting (Raw Material Demand) 

 

In inventory planning, the Random Forest 

model outperformed the other two models with an 

accuracy of 92.4%, closely followed by SVM at 89.7%. 

The MAE and RMSE for Random Forest were lower 

compared to both LSTM and SVM, indicating better 

predictive accuracy. The statistical significance was 

confirmed with a p-value of 0.010, suggesting that the 

Random Forest model provided a more stable and 

accurate forecast for raw material demand. 

 



 
 

 

 

 

 

 

Sufi Nusrat Quader et al, Sch J Eng Tech, Oct, 2025; 13(10): 845-854 

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          850 

 

 

 

 

Table 1: Model Performance in Sustainability Trend Forecasting (Social Signals) 

Model Accuracy (%) MAE RMSE Standard Deviation p-value 

SVM 85.8 0.25 0.30 0.07 0.040 

LSTM 80.2 0.35 0.42 0.08 0.055 

Random Forest 81.9 0.32 0.38 0.06 0.032 

 

For sustainability trend forecasting, the SVM 

model achieved the highest accuracy (85.8%), followed 

by Random Forest at 81.9%. The MAE for SVM (0.25) 

and RMSE (0.30) indicated that it was better at capturing 

fluctuations in social signals than LSTM. Despite being 

slightly less accurate than Random Forest, the p-value of 

0.040 suggests that SVM’s predictive capability was 

statistically superior in this domain. 

 

Table 2: Performance Comparison Based on Model Stability (Standard Deviation) 

Model Smart Manufacturing Inventory Planning Sustainability Trend 

LSTM 0.03 0.07 0.08 

Random Forest 0.04 0.05 0.06 

SVM 0.05 0.06 0.07 

 

In terms of model stability, LSTM 

demonstrated the lowest standard deviation across all 

domains, particularly excelling in smart manufacturing 

with 0.03. This suggests that LSTM’s predictions are 

highly consistent, with minimal variability. The Random 

Forest and SVM models showed slightly higher 

variability, especially in sustainability trend forecasting, 

where their standard deviations were 0.06 and 0.07, 

respectively. 

 

 
Figure 3: Frequency of Errors in Model Predictions 

 

The frequency of errors in model predictions 

was lowest for LSTM across all domains, with only 3 

errors in smart manufacturing. In contrast, SVM had the 

highest frequency of errors, particularly in sustainability 

trend forecasting, where it made 10 errors. This further 

supports LSTM’s superior performance in minimizing 

prediction errors. 

 

 
Figure 4: Model Accuracy Across Different Time Intervals (Hours/Days) 
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In time-based forecasting, LSTM was the most 

accurate in predicting power consumption in smart 

manufacturing (97.6%), followed by Random Forest 

(94.5%) and SVM (91.3%). In inventory planning, 

LSTM and Random Forest demonstrated the highest 

accuracy, while SVM performed better in sustainability 

trend forecasting, with an accuracy of 85.8%. This 

indicates that SVM was more suited to the long-term 

forecasting of sustainability trends. 

 

Table 3: Comparison of MAE and RMSE for Each Model Across Domains 

Model MAE 

(Manufacturing) 

MAE 

(Inventory) 

MAE 

(Sustainability) 

RMSE 

(Manufacturing) 

RMSE 

(Inventory) 

RMSE 

(Sustainability) 

LSTM 0.15 0.12 0.35 0.22 0.18 0.42 

Random 

Forest 

0.20 0.25 0.32 0.25 0.28 0.38 

SVM 0.30 0.22 0.25 0.35 0.30 0.30 

 

LSTM showed the lowest Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE) in smart 

manufacturing, which further emphasizes its efficiency 

in time-series forecasting. In contrast, SVM had the 

highest RMSE values, particularly in smart 

manufacturing and inventory planning, indicating that 

SVM’s predictions had a higher deviation from the actual 

values. 

 

 
Figure 5:  Statistical Significance of Model Performance (P-Value) 

 

The p-value analysis revealed that LSTM had 

the most statistically significant results in smart 

manufacturing forecasting (p = 0.002), demonstrating 

superior model performance. While Random Forest also 

showed strong performance in inventory planning and 

sustainability trends with p-values below 0.05, SVM’s p-

values were higher, suggesting it was less reliable than 

LSTM and Random Forest in these tasks. 

 

DISCUSSION 
The integration of Artificial Intelligence (AI) 

into forecasting models has significantly improved the 

accuracy, efficiency, and adaptability of predictions in 

various domains such as smart manufacturing, inventory 

planning, and sustainability trends [12]. This study 

aimed to evaluate and compare the performance of three 

commonly used AI-based forecasting models—Long 

Short-Term Memory (LSTM) networks, Random Forest, 

and Support Vector Machines (SVM)—across these 

domains. The results demonstrated that each model has 

unique strengths depending on the forecasting task and 

the type of data used. This discussion aims to critically 

analyze the findings from this study, compare them with 

results from other studies, and draw general 

interpretations regarding the use of AI-based models for 

forecasting in industrial and sustainability applications. 

 

Smart Manufacturing Forecasting: Power 

Consumption and Resource Optimization 

In the domain of smart manufacturing, 

forecasting power consumption is crucial for improving 

energy efficiency and operational planning. The results 

of this study showed that the LSTM model outperformed 

both Random Forest and SVM, achieving an accuracy of 
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97.6% and minimal standard deviation (0.03). This high 

level of accuracy is in line with the findings of previous 

studies that emphasize the ability of LSTM networks to 

capture temporal dependencies in time-series data. In a 

study by Serradilla et al., LSTM was found to 

significantly improve the accuracy of predictive 

maintenance models by learning from historical sensor 

data to forecast machine failures [13]. Similarly, the 

results from this study corroborate their findings by 

demonstrating LSTM's strong predictive power in 

forecasting power consumption patterns in 

manufacturing environments. Comparing this study’s 

findings with the results from other studies, we find that 

LSTM has consistently been shown to outperform other 

machine learning techniques in time-series forecasting. 

For example, Sedai et al., demonstrated that LSTM-

based models outperformed traditional statistical models 

like ARIMA and machine learning models like Random 

Forest in forecasting electricity demand in 

manufacturing plants [14]. The findings of this study 

further reinforce the suitability of LSTM for applications 

that require accurate, time-based predictions with a 

minimal margin of error. On the other hand, while 

Random Forest showed a strong performance with an 

accuracy of 94.5%, it was not able to match the high 

precision of LSTM in predicting power consumption. 

The Random Forest model, however, was still able to 

provide a stable and relatively accurate forecast, which 

aligns with the conclusions of previous studies by 

Salman et al., who demonstrated that Random Forests, 

while not always the most accurate, can handle large 

datasets with many variables and produce robust results 

[15]. Similarly, SVM, although effective in certain tasks, 

was less effective in this study, achieving an accuracy of 

91.3%. Previous studies have highlighted that SVMs 

struggle with high-dimensional datasets and may not 

perform as well in tasks requiring complex temporal 

relationships, which may explain the relatively lower 

performance observed in this study. The statistical 

significance of the results, as indicated by the p-value of 

0.002 for LSTM, further supports its superiority in this 

application. The low p-value suggests that the 

performance difference between LSTM and other 

models is statistically significant, aligning with the 

findings of similar studies where LSTM models 

demonstrated clear advantages in power consumption 

forecasting [16]. 

 

Inventory Planning Forecasting: Demand and Stock 

Management 

The second domain, inventory planning, is 

critical for managing raw materials and finished goods in 

supply chains, ensuring that the right amount of 

inventory is available without overstocking. In this 

domain, the Random Forest model achieved the highest 

accuracy (92.4%) compared to LSTM (88.9%) and SVM 

(89.7%). This outcome contrasts with the results from 

smart manufacturing, where LSTM excelled. Previous 

studies have also highlighted the strengths of Random 

Forest in handling discrete, structured data such as sales 

volumes and inventory levels. For example, in a study by 

Punia et al., Random Forest was found to be highly 

effective for demand forecasting in supply chains, 

particularly when predicting product sales and inventory 

replenishment needs [17]. The high accuracy and 

relatively low MAE (0.12) and RMSE (0.18) in this 

study further validate the robustness of Random Forest 

for inventory forecasting. In contrast, LSTM performed 

slightly worse in inventory planning, with a 4% lower 

accuracy than Random Forest. This could be attributed 

to the fact that LSTM models are typically better suited 

for continuous, time-series data rather than discrete, 

categorical data like inventory levels. As noted by Pełka 

et al., LSTM networks excel in capturing long-term 

dependencies in time-series data, but they may not 

perform as well with data that does not have a temporal 

element or that is inherently categorical [18]. The 

relatively higher MAE and RMSE for LSTM in this 

study suggest that it struggles to provide precise forecasts 

in this specific application compared to Random Forest. 

SVM also underperformed in this task, with an accuracy 

of 89.7% and a higher standard deviation (0.06). This is 

consistent with previous research that has found SVM to 

be less effective when dealing with large, complex 

datasets in inventory management [19]. SVM's 

limitations in handling large volumes of discrete data 

may explain its relative underperformance in this study. 

 

Sustainability Trend Forecasting: Predicting 

Consumer Behavior 

Sustainability trend forecasting, particularly 

using social signals like Twitter mentions and Google 

Trends, is a challenging task that requires models 

capable of handling unstructured, non-traditional data. In 

this study, the SVM model achieved the highest accuracy 

of 85.8% for forecasting sustainability trends, followed 

by Random Forest at 81.9% and LSTM at 80.2%. These 

results align with those of previous studies, such as those 

by Fatima et al., who found that SVM outperformed 

other machine learning models when forecasting shifts in 

consumer behavior related to environmental concerns 

[20]. This study’s results confirm that SVM is highly 

effective for signal-based forecasting, where traditional 

time-series models like LSTM may not capture the 

complexities of non-traditional data sources. SVM's high 

accuracy in this domain can be attributed to its ability to 

efficiently handle high-dimensional, sparse data, which 

is common in social signal analysis. As shown by Gao et 

al., SVM excels at identifying patterns in data that is not 

organized in traditional time-series format, such as the 

fluctuating frequency of social media mentions or search 

engine queries related to sustainability topics [21]. The 

findings of this study further reinforce the efficacy of 

SVM in predicting sustainability trends and consumer 

behavior based on social signals. The relatively lower 

accuracy of LSTM in this domain, with an accuracy of 

80.2%, suggests that time-series models may not always 

be the best choice for predicting non-temporal 

phenomena such as shifts in consumer sentiment. This is 

consistent with the findings of Khan et al., who noted 
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that LSTM models may struggle when applied to data 

sources that do not exhibit clear temporal patterns or 

where external factors play a significant role in shaping 

the forecast [22-26]. 

 

Statistical Comparison: Performance Metrics Across 

Models 

The overall comparison of performance metrics 

across the three domains highlights some key trends. In 

terms of predictive accuracy, LSTM consistently 

outperformed Random Forest and SVM in time-based 

forecasting tasks, particularly in smart manufacturing. 

However, for discrete demand forecasting in inventory 

planning and non-traditional signal-based forecasting in 

sustainability trends, Random Forest and SVM 

demonstrated better performance. The results from the 

statistical tests, including p-values and standard 

deviations, further suggest that LSTM excels in 

applications where time-series forecasting is essential 

but may struggle in other types of forecasting tasks. 

which compares model stability based on standard 

deviation, shows that LSTM maintained the lowest 

variability across all domains. This is important because 

stability is a critical factor in industrial applications 

where consistent performance is essential. On the other 

hand, SVM, which performed well in sustainability 

forecasting, showed the highest variability, indicating 

that its performance might be more susceptible to 

fluctuations in data quality or external factors. 

 

Implications for Industry Applications 

The findings of this study have several 

important implications for industries seeking to adopt 

AI-based forecasting systems. For smart manufacturing, 

LSTM should be prioritized for tasks that require time-

series forecasting, such as power consumption prediction 

and machine failure forecasting. In inventory planning, 

Random Forest appears to be the most effective model, 

particularly when dealing with discrete data such as 

inventory demand. For sustainability trend forecasting, 

SVM is the best choice, given its strong performance 

with non-traditional, signal-based data sources like 

social media and search engine queries. Overall, this 

study demonstrates that no single model is universally 

superior across all domains. Instead, the selection of the 

appropriate forecasting model should be driven by the 

specific characteristics of the data and the forecasting 

task at hand. Industries looking to implement AI-based 

forecasting systems must carefully assess their unique 

needs and the type of data available to determine the 

most suitable model. 

 

CONCLUSION 
This study highlights the significant potential of 

AI-based forecasting models in improving operational 

efficiency across smart manufacturing, inventory 

planning, and sustainability trends. The comparative 

analysis reveals that LSTM excels in time-series 

forecasting for smart manufacturing, Random Forest 

performs best in inventory planning, and SVM proves 

most effective for predicting sustainability trends. Future 

research should explore the integration of hybrid models, 

assess the scalability of AI forecasting systems in real-

world settings, and refine techniques for managing 

unstructured data sources in sustainability forecasting. 

 

Recommendations 

Industry stakeholders should prioritize LSTM for time-

based forecasting tasks in smart manufacturing. 

Random Forest is recommended for inventory planning, 

especially for discrete demand forecasting. 

SVM should be utilized for sustainability trend 

forecasting based on social signal data. 
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