
Citation: Yugesh Anne. Ensuring Real-Time Determinism in Complex Embedded Robotic Systems. Sch J Eng Tech,

2025 Nov 13(11): 855-859.

855

Scholars Journal of Engineering and Technology

Abbreviated Key Title: Sch J Eng Tech

ISSN 2347-9523 (Print) | ISSN 2321-435X (Online)

Journal homepage: https://saspublishers.com

Ensuring Real-Time Determinism in Complex Embedded Robotic

Systems
Yugesh Anne1*

1Johnson and Johnson Medtech, USA

DOI: https://doi.org/10.36347/sjet.2025.v13i11.001 | Received: 18.09.2025 | Accepted: 03.11.2025 | Published: 07.11.2025

*Corresponding author: Yugesh Anne
Johnson and Johnson Medtech, USA

Abstract Review Article

This article examines the central part real-time determinism has in key fields like autonomous vehicles, industrial

automation, and healthcare robotic systems. General-purpose computing platforms differ from safety-critical systems.

These systems are defined via real-time determinism as it ensures that tasks execute within strictly defined temporal

bounds alongside absolute certainty. Key foundational concepts, including Worst-Case Execution Time (WCET), are

examined with practical implementation strategies. Real-time operating systems that are (RTOS), hardware acceleration

for speed, deterministic scheduling algorithms with control, and specialized communication protocols are included now.

The article explores the technical challenges in achieving deterministic behavior in modern embedded environments

because it addresses issues that include cache interference, memory management, external I/O dependencies, and multi-

core architecture coordination. It additionally discusses verification methodologies as well as testing frameworks. These

validate timing guarantees designed under worst-case conditions. Emerging trends like hybrid systems, deterministic AI

integration, and domain-specific languages are analyzed and they are tailored for real-time constraints. Since it relies on

a broad range of research, the article gives a thorough overview of current practices and future directions for ensuring

predictable performance in increasingly advanced embedded robotic systems.

Keywords: Real-time determinism, Embedded systems, Worst-case execution time, Cache partitioning, Temporal

isolation, Deterministic scheduling, Safety-critical systems.
Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original
author and source are credited.

1. INTRODUCTION
 Real-time determinism requires a foundation

that is needed for robotic systems operating in modern

environments that are critical. Within complex robotic

applications, implementing deterministic behavior

involves challenges, methodologies, and solutions that

this technical article explores.

1.1 Understanding Real-time Determinism

Real-time determinism is in reference to the

ability of a system for completion of tasks within time

constraints that are predefined. This idea means

obtaining total sureness for job fulfillment. Robotic

systems in autonomous vehicles, industrial automation,

and healthcare settings must respond at guaranteed times

regardless of environmental conditions or system load

unlike general-purpose computing systems where

performance varies acceptably.

Real-time determinism bases itself upon the

concept of Worst-Case Execution Time (WCET) - the

maximum time a task could take to execute under any

circumstances. WCET estimation can improve greatly

using event-driven deterministic analysis methods as

Zhang et al., demonstrated. This is an improvement in

terms of accuracy relative to customary methods. The

implementation attained execution time variations inside

tight limits for critical real-time tasks using a quad-core

ARM Cortex-A53 processor representing a large gain

over typical methods [1].

Robotic systems that are embedded must be

engineered so that they consistently operate within these

timing bounds for the ensuring of deterministic

operation. This includes guaranteeing behavior that is

precise, repeatable for time-sensitive operations. Sensor

data acquisition, control loop execution, algorithmic

decision-making, and mechanical actuation are included

too.

2. Critical Application Domains Requiring

Deterministic Execution

Timing predictability is particularly vital in

critical fields where even small timing variations may

Yugesh Anne, Sch J Eng Tech, Nov, 2025; 13(11): 855-859

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 856

lead to system failure, safety risks, or impair

performance. These application areas highlight that

deterministic behavior is necessary, not optional.

2.1. Autonomous Vehicles

Enormous amounts of sensory input do have to

be processed and control decisions are executed by

autonomous driving systems within strict timing

constraints often on the order of milliseconds. Chen et

al., state modern autonomous vehicles generate terabytes

of data hourly, which necessitates ultra-low-latency

processing pipelines for safety-critical functions like

object recognition, lane tracking, and emergency

braking. Tactically partitioning workloads between in-

vehicle compute units with edge servers greatly reduced

processing latency via their implementation of a

distributed edge-cloud architecture. The system did not

only respond in a faster way for perception tasks but it

also became more reliable [2]. In the event that such

systems deviate from the expected timing behavior, this

then could lead to delayed reactions, so that the risk of

collisions or operational failure thereby increases.

2.2. Industrial Automation

Robots with precision complete tasks needing

accuracy in factories. This robotics relies in fact on exact

temporal coordination. Misalignments, quality

degradation, and even equipment damage can occur.

Even microsecond-level timing variations may cause

these problems. Liu et al., introduced the Real-time

Ethernet Deterministic Bus (REDBUS) architecture at

once. This was done in order to meet all these stringent

requirements. In their experimental setup, a network

having coordinated motor controllers had ultra-low end-

to-end latency and minimal jitter. When deployed in

high-precision assembly lines, REDBUS measurably

improved positioning accuracy also reduced the defect

rate compared to conventional Ethernet-based solutions

[3]. These results depict the foundational nature of

deterministic communication and control. Efficiency is

also relied on by safe industrial automation.

2.3. Healthcare Robotics

Medical robots operate through direct

interaction with human patients, especially in surgical

and assistive applications. Because of the fact that they

do this, timing guarantees are a matter of clinical safety

and of effectiveness. Robotic surgical platforms, for

instance, need high-frequency control loops that bound

latency variability tightly toward ensuring submillimeter

precision. Faragó et al., did evaluate deterministic

control algorithms within minimally intrusive

laparoscopic procedures, and this evaluation

demonstrated reductions within both procedure duration

and latency jitter. Because control stability increased,

surgical accuracy improved, patient outcomes were

better, also recovery times shortened and intraoperative

complications reduced [4]. In contexts such as these,

deterministic execution does not just perform rather it is

what one has to have to trust in it and adopt it.

3. Technical Approaches to Ensuring Real-Time

Determinism

Achieving real-time determinism within

complex embedded robotic systems requires a thorough

strategy that includes software, hardware, and

communication layers. In this section, key technical

strategies and research-backed solutions are outlined.

These strategies as well as solutions contribute to

predictable system behavior under strict temporal

constraints.

3.1. Real-Time Operating Systems (RTOS)

Predictability with timing is often sacrificed by

operating systems that are conventional as they prioritize

responsiveness plus average-case throughput. In

contrast, Real-Time Operating Systems (RTOS) such as

Free RTOS, QNX, and VxWorks support deterministic

task execution since they are purpose-built with features

like preemptive priority-based scheduling, bounded

interrupt latencies, and predictable task switching. Zhang

et al., conducted across multiple RTOS platforms a wide-

ranging evaluation of their event-driven deterministic

analysis method. According to their results, real-time

systems maintain strict worst-case response time

guarantees under high CPU utilization when RTOS

configurations are properly tuned. Deterministic

scheduling along with controlled task preemption greatly

reduced timing jitter. Also, it improved WCET

adherence in comparison to general-purpose operating

systems [1].

3.2. Hardware Acceleration

Computation offloading to dedicated hardware

accelerators powerfully reduces the execution time

variability. Chen et al., did investigate hardware

acceleration for autonomous vehicle control systems also

finding that Field-Programmable Gate Arrays (FPGAs)

along with Application-Specific Integrated Circuits

(ASICs) dramatically improved consistency for the

timing. Their hybrid edge-cloud architecture used

embedded FPGAs in the vehicle for handling latency-

sensitive sensor data. However, edge-based ASICs

performed deep learning inference tasks. Even this dual-

layer hardware acceleration framework enabled

deterministic task execution in the presence of degraded

network conditions. It also kept safety-critical timing

bounds since it did real-world driving scenarios [2].

3.3. Deterministic Scheduling Algorithms

With advanced scheduling techniques, real-

time guarantees are maintained. These methods matter in

systems using diverse job groups and small calculating

tools. Zhang et al., have compared a number of the

scheduling policies within embedded robotic workloads

and also highlighted all of the trade-offs between

utilization, precision, and flexibility. Their Rate-

Monotonic Scheduling (RMS) implementation improved

beyond common theoretical usage limits. The updated

implementation still preserved deterministic guarantees.

Earliest Deadline First (EDF) scheduling showed

Yugesh Anne, Sch J Eng Tech, Nov, 2025; 13(11): 855-859

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 857

superior adaptability and performance within systems

where tasks arrive dynamically, and it offered high CPU

utilization with minimal deadline violations.

Furthermore, their deploying a Time-Triggered

Architecture (TTA) achieved extraordinary temporal

precision, though configuring it was more complex and

also it reduced system flexibility [1].

3.4. Deterministic Network and Communication

Protocols

Deterministic timing must be present in

distributed robotic system components too. The Real-

time Ethernet Deterministic Bus (REDBUS) protocol

was in fact developed by Liu et al., to address those

synchronized, jitter-free communication challenges

found in those industrial automation contexts. REDBUS

achieved a tight synchronization in accuracy as well as

deterministic message delivery across distributed motor

controllers. Low latency and minimal jitter were kept up

even under a high network load because REDBUS was

then in operation. REDBUS offered characteristics that

were of a greatly improved worst-case latency compared

to standard industrial Ethernet protocols, and this

enabled coordinated control of actuators that are of high-

precision, such as multi-axis robotic arms operating with

timing resolution at the microsecond-level [3].

4. Implementation Challenges in Real-Time

Deterministic Robotic Systems

Achieving real-time determinism in complex

embedded robotic systems demands that you address a

number of implementation challenges which span a

range of hardware architecture and software design as

well as integrated systems. Such issues seem especially

intense in vital, high-functioning fields. Timing

deviations, though minor in those domains, can

compromise reliability or safety.

4.1. Cache Behavior

Processor caches represent elements critical to

the average performance case. However, they can often

introduce a timing variability that is detrimental to

deterministic execution. Gracioli et al., demonstrated

that unmanaged cache interference causes execution time

to fluctuate substantially upon modern embedded

platforms, including ARM Cortex-A9 and Intel systems.

Their comparative study into cache partitioning

techniques revealed that partitioning outperforms page

coloring in execution time isolation, while disabling

caches entirely for select memory regions yielded the

most consistent timing behavior even though it had

performance trade-offs. These results stress cache-aware

system design within real-time contexts [5].

4.2. Memory Management

Also timing unpredictability arises from

memory dynamic allocation. Heap-based allocators of

the customary type fragment memory, and they

especially may delay synchronization within workloads

that are multithreaded. Wasly and Pellizzoni addressed

this issue through the introduction of a Scratchpad

Memory Management Unit (SMMU). This unit

partitions memory in a deterministic fashion and is

guided through the compiler to replace allocation that is

dynamic. Hardware-assisted scratchpad memory can

ensure determinism and improve performance in

memory-intensive applications [6] simultaneously

because their FPGA-based prototype achieved consistent

memory access latencies across diverse workloads.

4.3. External Dependencies

I/O operations as well as network

communications often introduce nondeterministic

delays, especially in real-world distributed systems.

Biondi et al., improved the Logical Execution Time

(LET) model in AUTOSAR-compliant multicore

platforms. Their optimized implementation employed

buffer sharing coupled with synchronized I/O phases.

Thus, computation was isolated away from jitter-

inducing peripherals. An ARM Cortex-R5 system

evaluation confirmed variability reduced in worst-case

response time, and this shows communication strategies

aware of timing are important for dependable real-time

operation [7].

4.4. Multi-Core Coordination

Even though multicore processors offer

improved computational capacity, they do pose

determinism challenges with shared memory and bus

contention. MemGuard, which partitions memory access

among cores, was then developed by Kim et al.,

MemGuard greatly reduced WCET variability within a

quad-core Cortex-A9 system via effectively bounding

interference using enforcing bandwidth reservations on

critical tasks. The results stress resource management for

the memory subsystem sustaining reliable multicore

environment performance [8].

5. Verification and Testing for Timing Guarantees

Ensuring deterministic execution happens when

methodologies rigorously verify via static as well as

dynamic analyses.

5.1. Static Timing Analysis

Real-time system design is the place where

design-time estimation of worst-case execution time

(WCET) can begin. Gracioli et al., showed that cache-

aware static analysis can greatly reduce pessimism

within WCET bounds, which enables more efficient

resource allocation. Given that they integrated cache

partitioning models into their timing tools, they achieved

tighter and more accurate WCET estimates which are

important for safe and efficient scheduling in robotic

systems [5].

5.2. Runtime Monitoring

Because it checks timing guarantees throughout

operation, runtime monitoring is a complement to static

analysis. Wasly and Pellizzoni extended their SMMU by

non-intrusive monitoring. It tracked memory access

Yugesh Anne, Sch J Eng Tech, Nov, 2025; 13(11): 855-859

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 858

behavior then adjusted allocation strategies dynamically.

Because this is an influential assurance tool [6], their

closed-loop feedback system detected timing anomalies

plus the system optimized memory usage in real time.

5.3. Fault Injection

Strong real-time systems must maintain timing

guarantees at all times. This is necessary even in the

event under fault conditions. Biondi et al., introduced

within their work a thorough fault injection framework

that targeted at its core timing faults, memory corruption,

and also communication failures. Their improved

AUTOSAR platform demonstrated graceful degradation

coupled with bounded recovery times under fault

scenarios. It confirmed systematic stress testing helps

find timing-critical applications' latent weaknesses [7].

5.4. Formal Methods

Timing correctness is assured via formal

verification mathematically. Kim et al., did model the

memory interference constraints. WCET bounds were

precisely derived. They balanced coverage and

feasibility in their compositional method using formal

proofs for critical components plus heuristic analysis for

non-critical parts that were computationally intensive.

This strategy keeps the most vital parts of the system

provably deterministic [8] so computational costs are

reasonable.

6. Future Directions in Real-Time Deterministic

Robotics

As embedded robotics systems grow more

complex, new research directions are pushing

deterministic design boundaries now.

6.1. Hybrid Execution Architectures

Gracioli et al., explored hybrid system

architectures combining hard real-time partitions to

execute AI workloads with best-effort. They maintained

hard real-time guarantees upon select cores for the reason

that they used cache and core partitioning, also they

executed ML workloads upon general-purpose OS

partitions. This architectural strategy enables advanced

perception for decision-making. Thus, deterministic

control is not thereby compromised [5].

6.2. Deterministic AI

Neural networks increasingly support robotic

intelligence yet inference times are usually non-

deterministic. Wasly and Pellizzoni used scratchpad

memory techniques for inferring neural networks, which

reduced execution variability when they pruned

convolutional architectures. Their work enables

deploying deterministic AI in applications where both

real-time response and clever behavior are important [6].

6.3. Timing-Aware Development Tools

Biondi et al., highlighted timing-aware

programming models, especially in automotive

platforms. Their tools identified potential timing

violations early within development by extending the

AUTOSAR development methodology to incorporate

timing constraints as first-class elements. This shift

toward a timing-aware design environment could, in fact,

reduce integration costs. It is likely predictability will

improve across large embedded software projects [7].

6. CONCLUSION
Advanced embedded robotic systems still

require real-time determinism, especially if operation

occurs in safety-critical domains because severe timing

failures are possible. The studies examined in this article

reveal that achieving along with sustaining deterministic

behavior demands a holistic approach within. This

approach spans the hardware architecture, the operating

system design, the scheduling strategies, and the

communication protocols. Through systematically

addressing cache interference as well as memory

unpredictability with I/O jitter and multicore contention

sources of timing variability, engineers are able to design

systems that reliably and repeatedly perform under even

the most challenging of conditions. Important are strong

verification strategies. Validation strategies are equal in

that sense. Techniques such as static timing analysis,

runtime monitoring, fault injection, and formal

verification exist so as to assure temporal correctness.

The timing problems get revealed by these techniques.

Real-time performance can be certified by them in

controlled settings. As we do look ahead, the

convergence of deterministic control with flexible,

compute-intensive workloads for example those driven

through machine learning introduces some new

challenges along with opportunities. To advance in the

field, there will be a requirement for hybrid architectures,

isolating critical tasks and accommodating adaptive

behavior. Deterministic memory management for AI

inference as well as development tools that integrate

timing constraints from the outset also will be needed.

Ultimately, the future of autonomous embedded systems

will depend upon our ability for the sake of making

complexity and predictability reconcile. As robotic

platforms grow both in capability and in autonomy, it is

necessary for us to ensure that deterministic execution

persists for both safety and trust and also long-term

dependability along with performance.

REFERENCES
1. X.C. Shi, et al., “A Deterministic Analysis Method

of Embedded System Based on Event-driven,”

December 2020,

DOI:10.1109/IEEM45057.2020.9309908,

Conference: 2020 IEEE International Conference on

Industrial Engineering

and,EngineeringManagement(IEEM),Available:

https://www.researchgate.net/publication/34846937

2_A_Deterministic_Analysis_Method_of_Embedd

ed_System_Based_on_Event-driven

2. Sandeep Konakanchi, Researcher VII, “Real-Time

Processing in Autonomous Vehicle Networks: A

Distributed Edge-Cloud Architecture for Enhanced

https://www.researchgate.net/scientific-contributions/XC-Shi-2188165598
http://dx.doi.org/10.1109/IEEM45057.2020.9309908
https://www.researchgate.net/publication/348469372_A_Deterministic_Analysis_Method_of_Embedded_System_Based_on_Event-driven
https://www.researchgate.net/publication/348469372_A_Deterministic_Analysis_Method_of_Embedded_System_Based_on_Event-driven
https://www.researchgate.net/publication/348469372_A_Deterministic_Analysis_Method_of_Embedded_System_Based_on_Event-driven
https://www.researchgate.net/scientific-contributions/Sandeep-Konakanchi-2301799572?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Researcher-Vii

Yugesh Anne, Sch J Eng Tech, Nov, 2025; 13(11): 855-859

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 859

Autonomous Vehicle Performance,” December

2024DOI:10.34218/IJRCAIT_07_02_217,

researchgate, Available:

https://www.researchgate.net/publication/38969617

2_RealTime_Processing_in_Autonomous_Vehicle

_Networks_A_Distributed_Edge-

Cloud_Architecture_for_Enhanced_Autonomous_

Vehicle_Performance

3. Gabriele Brugnoni, Ludovico Minati,

“Microsecond-Level Real-Time Ethernet

Deterministic Bus (REDBUS): Architecture and

Motor Control Experiments,” January 2024, IEEE

Access PP(99):1-1,

DOI:10.1109/ACCESS.2024.3450801, Available:

https://www.researchgate.net/publication/38348187

5_Microsecondlevel_Realtime_Ethernet_Determini

stic_Bus_REDBUS_Architecture_and_motor_cont

rol_experiments

4. H. Ashrafian, et al., “The evolution of robotic

surgery: surgical and anaesthetic aspects,” British

Journal of Anaesthesia, Volume 119, Supplement 1,

December 2017, Pages i72-i84, Available:

https://www.sciencedirect.com/science/article/pii/S

0007091217541173

5. Murtada Dohan, Michael Opoku Agyeman, “A

Study of Cache Management Mechanisms for Real-

Time Embedded Systems,” September 2018,

DOI:10.1145/3284557.3284559, Conference: the

2nd International Symposium,

Available:https://www.researchgate.net/publication

/329411947_A_Study_of_Cache_Management_Me

chanisms_for_Real-Time_Embedded_Systems

6. Saud Wasly; Rodolfo Pellizzoni, “A Dynamic

Scratchpad Memory Unit for Predictable Real-Time

Embedded Systems.” IEEE, 19 September 2013,

10.1109/ECRTS.2013.28, Available:

https://ieeexplore.ieee.org/document/6602099

7. Alessandro Biondi, et al., “Logical Execution Time

Implementation and Memory Optimization Issues in

AUTOSAR Applications for Multicores,” June

2017, Conference: International Workshop on

Analysis Tools and Methodologies for Embedded

and Real-time Systems , Available:

https://www.researchgate.net/publication/31921343

7_Logical_Execution_Time_Implementation_and_

Memory_Optimization_Issues_in_AUTOSAR_Ap

plications_for_Multicores

8. Hyoseung Kim, et al., “Bounding memory

interference delay in COTS-based multi-core

systems,” IEEE, 19 January 2015, DOI:

10.1109/RTAS.2014.6925998, Available:

https://ieeexplore.ieee.org/document/6925998

http://dx.doi.org/10.34218/IJRCAIT_07_02_217
https://www.researchgate.net/publication/389696172_RealTime_Processing_in_Autonomous_Vehicle_Networks_A_Distributed_Edge-Cloud_Architecture_for_Enhanced_Autonomous_Vehicle_Performance
https://www.researchgate.net/publication/389696172_RealTime_Processing_in_Autonomous_Vehicle_Networks_A_Distributed_Edge-Cloud_Architecture_for_Enhanced_Autonomous_Vehicle_Performance
https://www.researchgate.net/publication/389696172_RealTime_Processing_in_Autonomous_Vehicle_Networks_A_Distributed_Edge-Cloud_Architecture_for_Enhanced_Autonomous_Vehicle_Performance
https://www.researchgate.net/publication/389696172_RealTime_Processing_in_Autonomous_Vehicle_Networks_A_Distributed_Edge-Cloud_Architecture_for_Enhanced_Autonomous_Vehicle_Performance
https://www.researchgate.net/publication/389696172_RealTime_Processing_in_Autonomous_Vehicle_Networks_A_Distributed_Edge-Cloud_Architecture_for_Enhanced_Autonomous_Vehicle_Performance
https://www.researchgate.net/scientific-contributions/Gabriele-Brugnoni-2290813102?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Ludovico-Minati-38736348?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/IEEE-Access-2169-3536
https://www.researchgate.net/journal/IEEE-Access-2169-3536
http://dx.doi.org/10.1109/ACCESS.2024.3450801
https://www.researchgate.net/publication/383481875_Microsecondlevel_Realtime_Ethernet_Deterministic_Bus_REDBUS_Architecture_and_motor_control_experiments
https://www.researchgate.net/publication/383481875_Microsecondlevel_Realtime_Ethernet_Deterministic_Bus_REDBUS_Architecture_and_motor_control_experiments
https://www.researchgate.net/publication/383481875_Microsecondlevel_Realtime_Ethernet_Deterministic_Bus_REDBUS_Architecture_and_motor_control_experiments
https://www.researchgate.net/publication/383481875_Microsecondlevel_Realtime_Ethernet_Deterministic_Bus_REDBUS_Architecture_and_motor_control_experiments
https://www.sciencedirect.com/journal/british-journal-of-anaesthesia
https://www.sciencedirect.com/journal/british-journal-of-anaesthesia
https://www.sciencedirect.com/journal/british-journal-of-anaesthesia/vol/119/suppl/S1
https://www.sciencedirect.com/science/article/pii/S0007091217541173
https://www.sciencedirect.com/science/article/pii/S0007091217541173
https://www.researchgate.net/profile/Murtada-Dohan?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Michael-Opoku-Agyeman?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.1145/3284557.3284559
https://www.researchgate.net/publication/329411947_A_Study_of_Cache_Management_Mechanisms_for_Real-Time_Embedded_Systems
https://www.researchgate.net/publication/329411947_A_Study_of_Cache_Management_Mechanisms_for_Real-Time_Embedded_Systems
https://www.researchgate.net/publication/329411947_A_Study_of_Cache_Management_Mechanisms_for_Real-Time_Embedded_Systems
https://ieeexplore.ieee.org/author/37074020400
https://ieeexplore.ieee.org/author/37282693900
https://doi.org/10.1109/ECRTS.2013.28
https://ieeexplore.ieee.org/document/6602099
https://www.researchgate.net/profile/Alessandro-Biondi?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/319213437_Logical_Execution_Time_Implementation_and_Memory_Optimization_Issues_in_AUTOSAR_Applications_for_Multicores
https://www.researchgate.net/publication/319213437_Logical_Execution_Time_Implementation_and_Memory_Optimization_Issues_in_AUTOSAR_Applications_for_Multicores
https://www.researchgate.net/publication/319213437_Logical_Execution_Time_Implementation_and_Memory_Optimization_Issues_in_AUTOSAR_Applications_for_Multicores
https://www.researchgate.net/publication/319213437_Logical_Execution_Time_Implementation_and_Memory_Optimization_Issues_in_AUTOSAR_Applications_for_Multicores
https://ieeexplore.ieee.org/author/38481621900
https://doi.org/10.1109/RTAS.2014.6925998
https://ieeexplore.ieee.org/document/6925998

