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Abstract  Review Article 
 

This paper introduces an improved approach to predictive data modeling by leveraging least squares optimization and 

global convex analysis. We begin with the construction of a linear predictive model and apply the least squares method 

to minimize residual error. Subsequently, we incorporate global convex optimization techniques to refine the model 

using quadratic forms. This approach offers enhanced prediction accuracy and robustness for specialized scientific 

datasets. The methodology is further translated into algorithmic pseudocode suitable for large-scale data programming. 

Real-world examples and visual illustrations validate the efficacy of the proposed model. 

Keywords: Least Squares, Global Convex Optimization, Predictive Modeling, Quadratic Form, Data Fitting. 
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1. INTRODUCTION 
With the rise of artificial intelligence and data-driven science, predictive modeling has become essential in 

specialized domains. Traditional modeling techniques often rely on linear assumptions and are prone to overfitting or 

inefficiencies in high-dimensional spaces. This paper introduces a hybrid approach - Least Squares Convex Optimization 

(LO) - that combines classical least squares methods with modern convex optimization frameworks to enhance predictive 

performance. 

 

2. THEORETICAL BACKGROUND 
 In this section, we introduce the foundations of our background theories, namely linear least squares problem and 

global convex optimization. 

 

2.1 Linear Least Squares Problem 

The linear least squares problem is a computational problem of primary importance, which originally arose from 

the need to fit a linear mathematical model to given observations. To reduce the influence of errors in observations one 

would then like to use a greater number of measurements than the number of unknown parameters in the model. A simple 

example involving the relationship between spring length and suspended objects is described below. 

 

Example: Consider Linear Spring Model 

Given measurements of spring length vs. mass: 

• Data:  [1, 2, 3, 4, 5], 5.2, 5.6, 5.9, 6.3, 6.7x y= =  

• How do you predict the length of spring?  

 

What is the best solution? 

 

Solution If we plot these databases, our points lie exactly on a line and we going to have the solution, but some 

of them do not. Since the points all lie close to a line, the problem “almost” has a solution by assuming that they approximate 

lie on a line. It means that y = a + bx. 

 

To find the coefficients a and b, we could try plugging y and x for each data point into y = a + bx, yielding the linear system 
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𝑎 + 𝑏 = 5.2
𝑎 + 2𝑏 = 5.6
𝑎 + 3𝑏 = 5.9
𝑎 + 4𝑏 = 6.3
𝑎 + 5𝑏 = 6.9

 (1) 

 

Unfortunately, this system cannot have any solutions.  

 

In this section we develop an approximation method that gives us a way to change a linear system that has no 

solutions into a new system that has a solution. Our method is such that we change the system as little as possible, so that 

the solution to the new system can serve as an approximate solution for the original system. To find a solution to this 

example, we need some of the development tools below. ■ 

 

The resulting problem is to "solve" an overdetermined linear system of equations. In matrix terms, given a vector 

𝑦 ∈ 𝑅𝑚 and a matrix 𝐴 (𝑚 × 𝑛 - matrix), 𝑚 > 𝑛, we want to find a vector 𝑥 ∈ 𝑅𝑛such that Ax is the "best" approximation 

to y. We have a linear system 

𝐴𝑥 = 𝑦 (2) 

 

With the changing the vector y in (2) into a new vector �̂� ∈ 𝑅𝑚 such that has a solution  

 

𝐴𝑥 = �̂� (3) 

 

There are many possible ways of defining the "best" solution. We choice one of which that can lead to a simple 

computational problem is to let x be a solution to the minimization problem 

 
2

2

0
min

x
r y y= -

$
 (4) 

 

where 𝑟 = 𝑦 − �̂� as the residual vector and ‖⋅‖ denotes the Euclidean vector norm. Problem (4) is called a linear least 

squares problem and x that satifies (4) is a linear least squares solution of the system (3). A least squares solution 

minimizes ‖𝑟‖2 = 𝑟1
2 + 𝑟2

2+. . . +𝑟𝑚
2 = ∑ 𝑟𝑖

2𝑚
𝑖=1 , i.e. the sum of the squared residuals [1]. 

 

Definition 1: Least Squares Solution 

Given a linear system Ax = y (A is an 𝑚 × 𝑛 - matrix, 𝑥 ∈ 𝑅𝑛 , 𝑦 ∈ 𝑅𝑚 ) that has no solutions, we find an approximate 

solution by solving 𝐴𝑥 = �̂�, where �̂� ∈ 𝑅𝑚 such that 
2

min
x

y y-
$

. This approach is called Least Squares Regression (or 

Linear Regression), and a solution �̂� to 𝐴𝑥 = �̂�is called a least  

 

Squares Solution. 

An alternative definition: 

If matrix 𝐴, an 𝑚 × 𝑛 - matrix, and vertor 𝑦 ∈ 𝑅𝑚, then a least squares solution to 𝐴𝑥 = 𝑦 is a vector �̂� in 𝑅𝑛such that  

 
‖𝐴�̂� − 𝑦‖ ≤ ‖𝐴𝑥 − 𝑦‖, ∀𝑥 ∈ 𝑅𝑛 

 

Definition 2: Orthogonal Projector 

Let S be a nonzero subspace with orthogonal basis {𝑣1, 𝑣2, . . . 𝑣𝑛}.Then the projection of u onto S (denoted 𝑝𝑆𝑢) is given 

by 

𝑝𝑠𝑢 =
𝑣1. 𝑢

‖𝑣1‖
𝑣1 +

𝑣2. 𝑢

‖𝑣2‖
𝑣2+. . . . +

𝑣𝑛 . 𝑢

‖𝑣𝑛‖
𝑣𝑛 (5) 

 

Theorem 3: Let y be a vector and S = col(A), S a subspace. Then the vector closest to y in S that satisfies (4) is given by 

�̂� = 𝑝𝑆𝑦.  

 

Proof of theorem 3  

Let a vector 𝑠 ∈ 𝑆, and �̂� = 𝑝𝑆𝑦.  

we have 𝑦 − �̂� ∈ 𝑆⊥, 

and 𝑠, �̂� ∈ 𝑆 ⇒ �̂� − 𝑠 ∈ 𝑆 (because S is a subspace) 

Therefore 𝑦 − �̂� and �̂� − 𝑠are orthogonal, so we have 
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‖𝑦 − 𝑠‖2 = ‖(𝑦 − �̂�) + (�̂� − 𝑠)‖2 
= ((𝑦 − �̂�) + (�̂� − 𝑠)). ((𝑦 − �̂�) + (�̂� − 𝑠)) 

= (𝑦 − �̂�). (𝑦 − �̂�) + (𝑦 − �̂�). (�̂� − 𝑠) + (�̂� − 𝑠). (𝑦 − �̂�) + (�̂� − 𝑠). (�̂� − 𝑠) 
= (𝑦 − �̂�). (𝑦 − �̂�) + (�̂� − 𝑠). (�̂� − 𝑠) + 2((�̂� − 𝑠). (𝑦 − �̂�)) 

= ‖𝑦 − �̂�‖2 + ‖�̂� − 𝑠‖2 

So we can deduce 

‖𝑦 − 𝑠‖2 ≥ ‖𝑦 − �̂�‖2, ∀𝑠 ∈ 𝑆 

 

Therefore, no vector in S is closer to y than �̂�, so �̂�is the vector in S that is closest to y. Furthermore, there is equality only 

when �̂� = s, so �̂� is the unique closest point. ■ 

 

This approach requires an orthogonal basis for S = col(A), so the problem in this example is still have no solution. 

If the columns of A are linearly independent, i.e., rank(A) = n, then another convenient approach is to use the following 

theories. We call it global convex optimization (GO). For details, see [1-3]. 

 

2.2 Global Convex Optimization (GCO) 

Definition 4: Convex Set and Convex Functions  

i. Convex Set. A set 𝛺 is convex if for any 𝑥1, 𝑥2 ∈ 𝛺 and any 𝜃with 0 ≤ 𝜃 ≤ 1, we have 𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈ 𝛺 

ii. Convex Functions. A function 𝑓: 𝑅𝑛 → 𝑅is convex if dom f is a convex set and if for all 𝑥, 𝑦 ∈ 𝑑𝑜𝑚𝑓, and 𝜃with 

0 ≤ 𝜃 ≤ 1, we have 𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦) 
 

Theorem 5: Let a function 𝑓: 𝑅𝑛 → 𝑅. We now assume that f is twice differentiable, that is, its second deriva tive 𝛻2𝑓 

(Hessian) exists at each point in dom f, an convex set. The following statements are equivalent. 

i. f is convex. 

ii. 𝑓(𝑦) ≥ 𝑓(𝑥) + 𝛻𝑓(𝑥)𝑇(𝑦 − 𝑥), ∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚𝑓. 

iii. 𝛻2𝑓(𝑥) ≥ 0, ∀𝑥 ∈ 𝑑𝑜𝑚𝑓. 

 

Proof of Theorem 5 

Firstly, we prove that (i) and (ii) are equivalent 

Let’s consider the case n = 1: We prove that a differentiable function 𝑓: 𝑅 → 𝑅is convex if and only if 𝑓(𝑦) ≥ 𝑓(𝑥) +
𝑓′(𝑥)(𝑦 − 𝑥), ∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚𝑓 

Since the convexity of 𝑑𝑜𝑚𝑓, ∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚𝑓, ∀∈ 𝑅, 0 ≤ 𝜃 ≤ 1 we have  

𝑥 + 𝜃(𝑦 − 𝑥) = 𝜃𝑦 + (1 − 𝜃)𝑥 ∈ 𝑑𝑜𝑚𝑓. 

and f is convex,∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚𝑓, ∀∈ 𝑅, 0 < 𝜃 ≤ 1 we have 

 

𝑓(𝑥 + 𝜃(𝑦 − 𝑥)) = 𝑓(𝜃𝑦 + (1 − 𝜃)𝑥) ≤ 𝜃𝑓(𝑦) + (1 − 𝜃)𝑓(𝑥)(6) 
 

divide both sides (6) by 𝜃, we obtain 

𝑓(𝑦) − 𝑓(𝑥) ≥
𝑓(𝑥 + 𝜃(𝑦 − 𝑥)) − 𝑓(𝑥)

𝜃
→ 𝑓′(𝑥)(𝑦 − 𝑥), 𝑤ℎ𝑒𝑛𝜃 → 0(7) 

Therefore  

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑓′(𝑥)(𝑦 − 𝑥)(8) 
 

Otherwise,∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚𝑓, 𝑥 ≠ 𝑦, and 0 ≤ 𝜃 ≤ 1, and let 𝑧 = 𝜃𝑥 + (1 − 𝜃)𝑦. Applying (8) we have 

𝑓(𝑥) ≥ 𝑓(𝑧) + 𝑓′(𝑧)(𝑥 − 𝑧)(9) 
and  

𝑓(𝑦) ≥ 𝑓(𝑧) + 𝑓′(𝑧)(𝑦 − 𝑧)(10) 
 

Multiplying (9) by 𝜃, (10) by 1 − 𝜃, then adding them together, we have 

𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦) ≥ 𝑓(𝑧) = 𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) 
 

which proves that f is convex. 

In general case, we have 𝑓: 𝑅𝑛 → 𝑅.  

 

Let 𝑥, 𝑦 ∈ 𝑅𝑛, consider funtion g defined by 

𝑔(𝑡) = 𝑓(𝑥 + 𝑡ℎ),0 ≤ 𝑡 ≤ 1, ℎ = 𝑦 − 𝑥 ∈ 𝑅𝑛(11) 
and it is clear that 

𝑔′(𝑡) = 𝛻𝑓(𝑥 + 𝑡ℎ)𝑇ℎ(12) 
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Assume first that f is convex, and we can imply that g is convex, and applying (8) we have 

 

𝑔(𝑡) ≥ 𝑔(𝑥) + 𝑔′(𝑥)(𝑡 − 𝑥)(13) 
by take 𝑡 = 1, 𝑥 = 0, we have 

𝑔(1) ≥ 𝑔(0) + 𝑔′(0) 
which means 

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝛻𝑓(𝑥)𝑇(𝑦 − 𝑥)(14) 
 

We have (14) holds for all x, y and we need to prove that f is convex 

If (1 ) and (1 )t ty t x dom f s ty t x dom f= + - Î = + - Î
% %

, we have 

𝑔(𝑡) = 𝑓(𝑡𝑦 + (1 − 𝑡)𝑥) ≥ 𝑓(�̃�𝑦 + (1 − �̃�)𝑥) + 𝛻𝑓(�̃�𝑦 + (1 − �̃�)𝑥)𝑇(𝑦 − 𝑥)(𝑡 − �̃�) 
or  

𝑔(𝑡) ≥ 𝑔(�̃�) + 𝑔′(�̃�)(𝑡 − �̃�)(15) 
 

We have (15) which implies that g is convex. 

Next, we prove that (ii) and (iii) are equivalent 

 

By the funtion g which consider above and ∀𝑡, �̃� and �̃� < 𝑡we have 

𝑔(𝑡) ≥ 𝑔(�̃�) + 𝑔′(�̃�)(𝑡 − �̃�)(16) and 

𝑔(�̃�) ≥ 𝑔(𝑡) + 𝑔′(𝑡)(�̃� − 𝑡)(17) 
Therefore 

𝑔′(�̃�)(𝑡 − �̃�) ≤ 𝑔(𝑡) − 𝑔(�̃�) ≤ 𝑔′(𝑡)(𝑡 − �̃�)(18) 
 

Dividing both sides by (𝑡 − �̃�)2 we get 
𝑔′(𝑡) − 𝑔′(�̃�)

𝑡 − �̃�
≥ 0(19) 

Let 𝑡 → �̃�, we have  

𝑔′′(𝑡) = ℎ𝑇𝛻2𝑓(𝑥 + 𝑡ℎ)𝑇ℎ ≥ 0(20) 
or 

𝛻2𝑓(𝑥) ≥ 0(21) 
Conversely, we have (21) and prove (14) is true 

 

If (1 ) and (1 )t ty t x dom f s ty t x dom f= + - Î = + - Î
% %

, 𝑡 < 𝑠. There exists r such that t < r < s, by applying the 

expansion of Taylor's formula, we have 

𝑔(𝑡) = 𝑔(𝑠) + 𝑔′(𝑠)(𝑡 − 𝑠) + 𝑔′′(𝑟)
(𝑡 − 𝑠)2

2!
(22) 

Because 𝑔′′(𝑡) ≥ 0, we have 

𝑔(𝑡) ≥ 𝑔(𝑠) + 𝑔′(𝑠)(𝑡 − 𝑠)(23) 
Let 1 and 0t s= = , we have 

𝑔(1) ≥ 𝑔(0) + 𝑔′(0) 
or 

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝛻𝑓(𝑥)𝑇(𝑦 − 𝑥) ■ 

 

Definition 6: A function 𝑓: 𝑅𝑛 → 𝑅 is a quadratic form if f that has the form 

𝑓(𝑥) = 𝑥𝑇𝐴𝑥(24) 
 

where A is an 𝑛 × 𝑛 symmetric matrix called the matrix of the quadratic form. 

With the quadratic form satisfying formula (24) we have the gradient vector 

𝛻𝑓𝐴(𝑥) = 2𝐴𝑥(25) 
and the Hesse matrix 

𝛻2𝑓𝐴(𝑥) = 2𝐴(26) 
 

The inequality (ii) shows that if 𝛻𝑓(𝑥) = 0, then for all 𝑦 ∈ 𝑑𝑜𝑚𝑓, 𝑓(𝑦) ≥ 𝑓(𝑥), i.e., x is a global minimizer of the 

function f. We have corollary. 

 

Corollary 7: Let a function 𝑓: 𝑅𝑛 → 𝑅. We now assume that f is differentiable, dom f is a convex set

0 0
, such that ( ) 0x dom f f xÎ =∇ . We have 
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If f is convex funtion then 𝑥0 is a global minimizer of the function f and denote 

0
( ) Gmin ( )

x dom f
f x f x

Î
=  

 

Theorem 8: Given A is an 𝑚 × 𝑛 matrix, 𝑛 ≤ 𝑚, such that 𝑟𝑎𝑛𝑘(𝐴) = 𝑛 and vector 𝑏 ∈ 𝑅𝑚. We have 
2

1Gmin ( ) (27)
n

T T

x R

Ax b A A A b-

Î

- =  

where Gmin is global minimum 

 

Proof 

Let funtion 𝑓: 𝑅𝑛 → 𝑅 be defined by 

𝑓(𝑥) = ‖𝐴𝑥 − 𝑏‖2 

where A is an 𝑚 × 𝑛 matrix, 𝑛 ≤ 𝑚, such that 𝑟𝑎𝑛𝑘(𝐴) = 𝑛 and vector 𝑏 ∈ 𝑅𝑚. We have 

𝑓(𝑥) = ‖𝐴𝑥 − 𝑏‖2 = ⟨𝐴𝑥 − 𝑏, 𝐴𝑥 − 𝑏⟩ = (𝐴𝑥 − 𝑏)𝑇(𝐴𝑥 − 𝑏) 
= (𝑥𝑇𝐴𝑇 − 𝑏𝑇)(𝐴𝑥 − 𝑏) 
= 𝑥𝑇𝐴𝑇𝐴𝑥 − 𝑥𝑇𝐴𝑇𝑏 − 𝑏𝑇𝐴𝑥 + 𝑏𝑇𝑏 
= 𝑥𝑇(𝐴𝑇𝐴)𝑥 − (2𝑏𝑇𝐴𝑥) + 𝑏𝑇𝑏(𝑏𝑒𝑐𝑎𝑢𝑠𝑒(𝑥𝑇𝐴𝑇𝑏)𝑇 = 𝑏𝑇(𝐴𝑇)𝑇(𝑥𝑇)𝑇 = 𝑏𝑇𝐴𝑥) 

 

the gradient vector of funtion f 

𝛻𝑓(𝑥) = 2(𝐴𝑇𝐴)𝑥 − 2𝑏𝑇𝐴 = 2(𝐴𝑇𝐴)𝑥 − 2𝐴𝑇𝑏 

and the Hesse matrix of funtion f 

𝛻2𝑓(𝑥) = 2(𝐴𝑇𝐴) 
with ℎ ∈ 𝑅𝑚, we have 

ℎ𝑇𝛻2𝑓(𝑥)ℎ = 2[ℎ𝑇(𝐴𝑇𝐴)ℎ] = 2[(ℎ𝑇𝐴𝑇)(𝐴ℎ)] = 2‖𝐴ℎ‖2 ≥ 0 

It means  

𝛻2𝑓(𝑥) ≥ 0 

 

Furthermore, 𝑟𝑎𝑛𝑘(𝐴𝑇𝐴) = 𝑟𝑎𝑛𝑘(𝐴) = 𝑛, so (𝐴𝑇𝐴) is an invertible matrix. 

Therefore, applying theorem 5 to solve the equation 𝛻𝑓(𝑥) = 0, 𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏, is the global minimum of funtion f. ■ 

 

3. PREDICTIVE DATA MODEL 
3.1 Data Model 

We are given m data sets (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛), 𝑖 = 1, . . . , 𝑚 and m relevant information 𝑦𝑖 , 𝑖 = 1, . . . , 𝑚, which is denoted by 

D, an 𝑚 × 𝑛 matrix, 𝑚 > 𝑛, and by I, an 𝑚 × 1 matrix 

 

𝐷 = [

𝑥11 𝑥12 . . . 𝑥1𝑛
𝑥21 𝑥22 . . . 𝑥2𝑛
⋮ ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 . . . 𝑥𝑚𝑛

] , 𝐼 = [

𝑦1
𝑦2
⋮
𝑦𝑚

] 

 

The problem is how to predict the value of 𝑦. The solution is to find a function f that matches this data as closely as possible. 

The function f is called the model (predictor function). In this paper, we consider the linear model below. 

 

We consider a family of functions 𝑓𝑖: 𝑅
𝑛 → 𝑅, 𝑖 = 1, . . . , 𝑝, with common domain dom

i
f D= . With each 𝜃 =

(𝜃1, 𝜃2, . . . , 𝜃𝑝) ∈ 𝑅
𝑝we associate the function 𝑓: 𝑅𝑛 → 𝑅given by  

𝑓(𝑥) = 𝜃1𝑓1(𝑥) + 𝜃2𝑓2(𝑥)+. . . +𝜃𝑝𝑓𝑝(𝑥) = ∑𝜃𝑖𝑓𝑖(𝑥)

𝑝

𝑖=1

(28) 

where 𝑓𝑖: 𝑅
𝑛 → 𝑅, 𝑖 = 1, . . . , 𝑝 is called the set of basic functions, the vector 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑝) ∈ 𝑅

𝑝, model parameters, 

is our optimization variable (or coefficient vector).  

 

In applications, the basic functions are specially chosen, using prior knowledge or experience, to reasonably model 

functions of interest with the finite-dimensional subspace of functions. In many fields, families of functions are often used 

as: Polynomials, Piecewise-linear functions, Piecewise polynomials and splines, etc. [7]. 

 

With the basic functions given, problem (28) becomes the problem of finding 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑝) ∈ 𝑅
𝑝 such that 

f best fits (consistent) y. We compute the residual of f and 𝑦 = (𝑦1, 𝑦2 , . . . , 𝑦𝑚) to know the goodness of fit of the model, 

denoted by r, and given by. 
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𝑟 = 𝑦 − 𝑓(29) 
or 

𝑟𝑖 = 𝑦𝑖 − (𝜃1𝑓1(𝑥
𝑖) + 𝜃2𝑓2(𝑥

𝑖)+. . . +𝜃𝑝𝑓𝑝(𝑥
𝑖)) 

with 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛), 𝑖 = 1, . . . , 𝑚 

 

Therefore 

𝑟 = [

𝑟1
𝑟2
⋮
𝑟𝑚

] = [

𝑦1
𝑦2
⋮
𝑦𝑚

] −

[
 
 
 
 
𝑓1(𝑥

1) 𝑓2(𝑥
1) . . . 𝑓𝑝(𝑥

1)

𝑓1(𝑥
2) 𝑓2(𝑥

2) . . . 𝑓𝑝(𝑥
2)

⋮ ⋮ ⋱ ⋮
𝑓1(𝑥

𝑚) 𝑓2(𝑥
𝑚) . . . 𝑓𝑝(𝑥

𝑚)]
 
 
 
 

[

𝜃1
𝜃2
⋮
𝜃𝑝

] 

and by denoted 

𝐴 =

[
 
 
 
 
𝑓1(𝑥

1) 𝑓2(𝑥
1) . . . 𝑓𝑝(𝑥

1)

𝑓1(𝑥
2) 𝑓2(𝑥

2) . . . 𝑓𝑝(𝑥
2)

⋮ ⋮ ⋱ ⋮
𝑓1(𝑥

𝑚) 𝑓2(𝑥
𝑚) . . . 𝑓𝑝(𝑥

𝑚)]
 
 
 
 

, 𝜃 = [

𝜃1
𝜃2
⋮
𝜃𝑝

] , 𝑦 = [

𝑦1
𝑦2
⋮
𝑦𝑚

] 

then we rewrite expression (29) 

𝑟 = 𝑦 − 𝐴𝜃 

Then the problem (28) becomes 
2

min (30)A y
q

q -  

 

Applying theorem 8 for A, an 𝑚 × 𝑛 matrix, 𝑛 ≤ 𝑚, such that 𝑟𝑎𝑛𝑘(𝐴) = 𝑛 and vector 𝑏 = 𝑦 ∈ 𝑅𝑚we have the value of 

𝜃that makes f is the best consist of y below 
2

1

0
Gmin ( )

p

T T

R

A y A A A y
q

q q -

Î

= - =  

 

3.2 Modified Model 

In data prediction models, model modification is often called solution update. We have several cases where 

modification is needed. We can add rows of matrix A (in model (30)), delete rows, or both to the model; otherwise, we can 

add, delete columns of matrix A, or both. This arises because the data is coming in sequence. The modification must be 

done with as few operations and as little storage as possible, it must satisfy the following two conditions 

i. Reasonable computational cost with low algorithmic complexity. For example, recomputing QR decomposition 

is too expensive because it requires 𝑂(𝑚𝑛2) operations. 

ii. Real-time feedback, the solution must be accurate within the limits of the data and the conditions of the problem; 

a stable method must be used. 

 

There are many methods for model updating, such as: QR decomposition method, recursive least squares 

algorithm, using aggregation functions in fuzzy mathematics, etc. These methods are still commonly used in some cases, 

although they do not satisfy the requirement. Therefore, we introduce a positive diagonal weight matrix,  

 

𝑊 = 𝑑𝑖𝑎𝑔(𝑤1 , 𝑤2, . . . , 𝑤𝑚),0 < 𝑤𝑖 ≤ 1 

 

Problem (30) is equivalent to a weighted linear least squares problem 

°
2

min (31)A y
q

q -
%

 

where �̃� = 𝑊
1

2𝐴, �̃� = 𝑊
1

2𝑦 

 

However, the inclusion of the diagonal weight matrix in problem (30) changes the size greatly in applications, 

making this approach unstable. When A is an 𝑚 × 𝑛matrix with m much larger than n, up to thousands of times, solving 

problems (30) is computationally very difficult when the input data is large. It is a stiff problem for solving [1-8].  

 

To solve this stiff problem, we consider the important special case where only the first p equations are weighted 

(p is also the number of basic functions 𝑓𝑖). That is, 𝐴 = (
𝐴1
𝐴2
), 𝑦 = (

𝑦1
𝑦2
)and matrix 𝐷 = 𝑑𝑖𝑎𝑔(𝑤1, 𝑤2, . . . , 𝑤𝑝) is obtained 

from matrix 𝑊 = 𝑑𝑖𝑎𝑔(𝑤1, 𝑤2, . . . , 𝑤𝑚), where 𝐴1 is an 𝑝 × 𝑛 matrix, 𝐴2is an (𝑚 − 𝑝) × 𝑛matrix, vector 𝑦1 ∈ 𝑅
𝑝, vector 

𝑦2 ∈ 𝑅
𝑚−𝑝. And then we have 
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min (32)D A D y

A y
q

q
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3.3 Model Update Strategy 

To accommodate streaming data or system changes, modify matrix A  by adding/removing rows or columns. Updates 

must be computationally efficient to maintain real-time applicability. 

 

4. Implementation and Examples 

 

Example 1: Linear Spring Model 

Given measurements of spring length vs. mass: 

• Data: [1,2,3,4,5]x = , [5.2,5.6,5.9,6.3,6.7]y =  

• Model: y a bx= +  

Solution yields: 4.83 0.37y x= +  

 

Example 2: ICPI (Increase in Consumer Price Index) Prediction Model 

Quarterly ICPI data is modeled as a cubic polynomial: 
2 3( )f x a bx cx dx= + + +  

Solution yields: 
2 31.20 1.25 0.28 0.02y x x x= + − +  

 

5. Algorithmic Framework 

We propose the following modular pipeline for predictive modeling: 

1. data = collect_data() 

2. data_cleaned = preprocess_data(data) 

3. features = extract_features(data_cleaned) 

4. train_data, test_data = split_data(features, test_size=0.2) 

5. model = select_model(model_type='LinearRegression') 

6. trained_model = train_model(model, train_data) 

7. model_performance = evaluate_model(trained_model, test_data) 

8. predictions = model.predict(new_data) 

9. optimal_params = optimize_model(predictions, trained_model) 

10. update_system(optimal_params) 

 

This structure ensures adaptability for large-scale data systems and scientific applications. 

 

6. CONCLUSION AND FURTHER STUDY 
The paper recommends a linear model for predictive data which combines the advantages of both calculus and algebra and 

called LSCO. 

− Convex least squares optimization allows modeling of predictive data in a linear form. LSCO models help to 

accurately predict the output value when we have any input data. 

− Positive diagonal weight matrix is used to fit the data or update the model with as few operations and as little 

storage as possible. 

 

In the future, two studies will be: 

− Multi-objective optimization extensions such as model: 
2

1 1 2 2
min , , ,

k k
A y A y A y

q
q q q- - -K  

 

where 𝐴𝑖 is an 𝑚𝑖 × 𝑛 matrix, vector 𝑏𝑖 ∈ 𝑅
𝑚𝑖 , 𝑖 = 1, . . . , 𝑘 

− Application to medical prediction systems (e.g., human hearing, neural implants) 

− Integration with deep learning architectures for hybrid modeling 
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