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Abstract  Original Research Article 
 

The differential equations, usually the goal is to find a solution. In other words, we want to find a function (or functions) 

that satisfies the differential equation. The technique we use to find these solutions varies, depending on the form of the 

differential equation with which we are working. Second-order differential equations have several important 

characteristics that can help us determine which solution method to use. In this section, we examine some of these 

characteristics and the associated terminology. An equation containing the derivatives of one or more dependent 

variables, with respect to one or more independent variables, is said to be a differential equation (DE). 

Keywords: differential equations, terminology, independent variables. 
Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 
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0.1.1 CLASSIFICATION BY TYPE 

If an equation contains only ordinary derivatives of one or more dependent variables with respect to a single 

independent variable it is said to be an ordinary differential equation (ODE) 

For example, 

ⅆ2𝑦

ⅆ𝑥2 −
ⅆ𝑦

ⅆ𝑥
+ 6𝑦 = 0                                                                         (0.1.1) 

 

Partial differential equation PDE 

An equation involving partial derivatives of one or more dependent variables of two or more independent variables 

[4]. For example, 

𝜕
2
𝑦

𝜕𝑥2 +
𝜕

2
𝑢

𝜕𝑦2
= 0                                                                                             (0.1.2) 

 

0.1.2 CLASSIFICATION BY ORDER 

The order of a differential equation (either ODE or PDE) is the order of the highest derivative in the equation. 
ⅆ2𝑦

ⅆ𝑥2 −
ⅆ𝑦

ⅆ𝑥
+ 6𝑦 = 0                                                                           (0.1.3) 

 

is a second-order ordinary differential equation. 

 

0.1.3 CLASSIFICATION BY LINEARITY 

let 

F (x, y, y˙, . . . , y(n)) = 0                                                                  (0.1.4) 

 

Nth-order ordinary differential equation in one dependent variable is said to be linear if F is linear in 

y˙, y¨, . . . , y(n)                                                                                  (0.1.5) 
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for example, 

 

ⅆ
2

𝑦

ⅆ𝑥2 + 𝑠𝑖𝑛 𝑦 = 0                                                                                    (0.1.6) 

 

is nonlinear second-order ordinary differential equation. And 

 

ⅆ
2

𝑦

ⅆ𝑥2 + 𝑠𝑖𝑛 𝑥 = 0                                                                                    (0.1.7) 

 

is linear second-order ordinary differential equation. 

 

0.1.4 Solution of an ODE 

Any function ψ, defined on an interval I and possessing at least n derivatives that are continuous on I, which when 

substituted into an nth-order ordinary differential equation reduces the equation to an identity, is said to be a solution of 

the equation on the interval. 

 

0.1.5 Implicit Solution of an ODE 

A relation G (x, y) = 0 is said to be an implicit solution of an ordinary differential equation 

F (x, y, y˙, . . ., y(n)) = 0                                                                 (0.1.8) 

 

On an interval I, provided that there exists at least one function ψ that satisfies the relation as well as the differential 

equation on I. 

 

0.1.6 SYSTEMS OF DIFFERENTIAL EQUATIONS 

A system of ordinary differential equations is two or more equations involving the derivatives of two or more 

unknown functions of a single independent variable[?]. then a system of two first-order differential equations is given by 
ⅆ𝑥

ⅆ𝑡
= 𝑓(𝑡, 𝑥, 𝑦)                                                                                                (0.1.9) 

 
ⅆ𝑦

ⅆ𝑡
= 𝑓(𝑡, 𝑥, 𝑦)                                                                                              (0.1.10) 

 

 

A solution of a system such as 
ⅆ𝑥

ⅆ𝑡
= 𝑓(𝑡, 𝑥, 𝑦)                                                                                              (0.1.11) 

 
ⅆ𝑦

ⅆ𝑡
= 𝑓(𝑡, 𝑥, 𝑦)                                                                                              (0.1.12) 

 

 

 

is a pair of differentiable functions x = ψ1(t) and y = ψ2(t). 

 

0.1.7 Two form of Second-Order Linear Differential Equations 

first form 

 

P (x)
ⅆ

2
y

ⅆx2 + Q(x) 
dy

ⅆx
+R(x)y=G(x)                                                              (0.1.13) 

 

Where P, Q, R and G are continuous functions. if G(x)=0 for all x Such equations are called homogeneous linear equations. 

we will get 

 

P (x)
ⅆ

2
y

ⅆx2 + Q(x) 
dy

ⅆx
+R(x)y= 0                                                                    (0.1.14) 

 

If G(x) /= 0for all x Such equations are called nonhomogeneous. 

 

 



 

    

Alaa Abalgaduir et al, Sch J Phys Math Stat, Mar, 2024; 11(3): 40-45 

© 2024 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          42 

 

 

0.1.8 Two type to solve homogeneous linear equations 

If we know two solutions y1 and y2 of such an equation, then the linear combination. 

y = c1y1 + c2y2                                                                                        (0.1.15) 

 

If y1and y2 and are linearly independent solutions of Equation 

P (x)
ⅆ

2
y

ⅆx2 + Q(x) 
dy

ⅆx
+R(x)y=0                                                                      (0.1.16) 

 

and P (x) is never 0, then the general solution is given by 

y(x) = c1y(x)1 + c2y(x)2                                                                          (0.1.17) 

 

Where c1 and c2 are arbitrary constants. 

 

0.1.9 Second form of Second-Order Linear Differential Equations 

𝛼
ⅆ

2
y

ⅆx2 + b 
dy

ⅆx
 + cy=0                                                                                     (0.1.18) 

 

Where a, b and c are constants and a 

 

0. let 

y = erx                                                                                                  (0.1.19) 

 

and 

y˙ = rerx                                                                                                (0.1.20) 

 

further more 

y¨ = r2erx                                                                                               (0.1.21) 

 

the solution of 

𝛼
ⅆ

2
y

ⅆx2 + b 
dy

ⅆx
 + cy=0                                                                                     (0.1.22) 

 

in this form 

ar2 + br + c = 0                                                                                    (0.1.23) 

 

Called the auxiliary equation (or characteristic equation) [4]. 

the roots of the auxiliary equation. 

 

We distinguish three cases according to the sign of the discriminant b2 − 4ac 

 

0.1.10 CASE I 

b2 − 4ac > 0                                                                                         (0.1.26) 

 

If the roots r1 and r2 of the auxiliary equation are real and unequal, then the general 

solution of 

𝛼
ⅆ

2
y

ⅆx2 + b 
dy

ⅆx
 + cy=0                                                                                    (0.1.27) 

 

is 

y = c1e
r1x + c2xer2x                                                                             (0.1.28) 

 

0.1.11 CASE 2 

b2 − 4ac = 0                                                                                         (0.1.29) 

 

if the auxiliary equation has only one real root, then the general solution of 

𝛼
ⅆ

2
y

ⅆx2 + b 
dy

ⅆx
 + cy=0                                                                                    (0.1.30) 

 

y = c1e
rx + c2xerx                                                                                  (0.1.31) 
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0.1.12 CASE 3 

b2 − 4ac < 0                                                                                          (0.1.32) 

 

The roots r1 and r2 of the auxiliary equation are complex numbers. 

r1 = α + iβ                                                                                             (0.1.33) 

 

and  

r2 = α − iβ                                                                                              (0.1.34) 

 

then the general solution of 

𝛼
ⅆ

2
y

ⅆx2 + b 
dy

ⅆx
 + cy=0                                                                                     (0.1.35) 

 

if 

y = eαx(c1 cos βx + c2 sin βx)                                                                 (0.1.36) 

 

0.2 HOMOGENEOUS LINEAR FIRST ORDER SYS- TEMS WITH CONSTANT COEFFICIENTS 

The general homogeneous linear first-order system 

X˙ = AX                                                                                                  (0.2.1) 

 

Where A is an 2 × 2 matrix of constants [3]. find to solution in the form 

X = Keλt                                                                                                   (0.2.2) 

 

0.2.1 EIGENVALUES AND EIGENVECTORS 

if 

X = Keλt                                                                                                                                                      (0.2.3) 

   

to be a solution vector of 

X˙  = AX                                                                                             (0.2.4) 

 

then 

X˙  = Kλeλt                                                                                              (0.2.5) 

 

so that the system becomes 

Kλeλt = AKeλt                                                                                         (0.2.6) 

 

let 

AK = λK                                                                                                 (0.2.7) 

 

or 

(A − λI) K = 0                                                                                         (0.2.8) 

 

Thus, to find a nontrivial solution X of 

  X˙ = AX                                                                                                (0.2.9) 

 

find a nontrivial vector K that satisfies 

(A − λI) K = 0                                                                                        (0.2.10) 

 

the equation 

det (A − λI) = 0                                                                                   (0.2.11) 

 

is called the characteristic equation of the matrix A. hence 

X = Keλt                                                                                              (0.2.12) 

 

will be a solution of the system differential equation ⇐⇒ λ is an eigen value of A and 

K is an eigen vector corresponding to λ. 
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Three cases of eigen value 

Case 1 

The 2 × 2 matrix A possesses n distinct real eigenvalues 

λ1, λ2                                                                                                      (0.2.13) 

 

then a set of n linearly independent eigenvectors 

K1, K2                                                                                                  (0.2.14) 

 

then 

X1 = K1e
λ1t                                                                                         (0.2.15) 

 

and 

X2 = K2e
λ2t                                                                                            (0.2.16) 

 

is a fundamental set of solutions of 

X˙ = AX                                                                                                 (0.2.17) 

 

then 

X = K1e
λ1t + K2e

λ2t                                                                               (0.2.18) 

 

Case 2 

if (λ − λ1)
2 is a factor of the characteristic equation while (λ − λ1)

3 is not a factor, thenλ1 is said to be an eigenvalue of 

multiplicity 2. 

For some 2×2matrices A it may be possible to find m linearly independent eigenvectors K1, 

K2. corresponding to an eigenvalue λ1 of multiplicity 2. then the general solution is 

X = c1K1e
λ1t + c2K2e

λ2t                                                                         (0.2.19) 

 

If there is only one eigenvector corresponding to the eigenvalue λ1 of multiplicity 2, then 2 linearly independent solutions 

of the form 

X1 = K11eλ1t                                                                                          (0.2.20) 

X2 = K21teλ2t + K22eλ1t                                                                         (0.2.21)  

 

Where Kij are column vectors. 

 

Case 3 

Let K1 be an eigenvector of the coefficient matrix A (with real entries) corresponding to the complex eigenvalue 

λ1 = α + βı                                                                                             (0.2.22) 

 

then the solution are 

X1 = (B1 cos βt − B2 sin βt)eαt                                                              (0.2.25) 

X2 = (B2 cos βt − B1 sin βt)eαt                                                              (0.2.26) 

 

are linearly independent solutions. 

B1 and B2 denote the column vectors. 

 

RESULT AND DISCUSSION 
We can solve second-order, linear, homogeneous differential equations with constant coefficients by finding the 

roots of the associated characteristic equation. The form of the general solution varies, depending on whether 

the characteristic equation has distinct, real roots; a single, repeated real root; or complex conjugate roots. The three cases 

are summarized 
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