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Abstract  Review Article 
 

Assume that a mass m is fastened to the free end of a flexible spring that is hanging vertically from a rigid support [5]. 

Naturally, the mass of the spring will determine how much it stretches or elongates; different weight masses will stretch 

the spring in different ways. The spring itself exerts a restoring force F that is proportional to the amount of elongation 

s and opposed to the direction of elongation, according to Hooke's law. Put simply. When a mass m is connected to a 

spring, the mass extends the spring by a certain amount, reaching an equilibrium where the restoring force ks balances 

the mass W. Remember that [6] defines weight.  

w = mg                                                                               (0.3.1) 

 

the condition of equilibrium is 

mg = −ks                                                                            (0.3.2) 

 

or 

mg − ks = 0                                                                                     (0.3.3) 

 

In the event that the mass deviates from its equilibrium position by an amount x, the spring's restoring force is equal to 

k(x + s). 

 

We can associate Newton's second rule with the net, or resultant, force of the restoring force and the weight W is 

balanced by the restoring force ks, provided that there are no retarding forces operating on the system and that[6] the 

mass vibrates free of other external forces—free motion. Remember that [6] defines weight. 
ⅆ2𝑥

ⅆ𝑡2 =  −𝑘(𝑠 +  𝑥)  +  𝑚𝑔                                                          (0.3.5) 

 

= −kx + mg − ks = −kx                                                              (0.3.5) 

The spring's restoring force works in the opposite direction of motion, as shown by the negative sign. Additionally, we 

follow the tradition that displacements recorded in positive values below the equilibrium position [6]. 

Keywords: weight masses, spring, motion. 
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0.1.1 DE OF FREE UNDAMPED MOTION 

By dividing (1) by the mass m, we obtain the second-order differential equation 

 

ⅆ2𝑥

ⅆ𝑡2 +
𝑘

𝑚
𝑥 = 0                                                                   (0.3.6) 

 

Or 
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ⅆ2𝑥

ⅆ𝑡2 + 𝜔2𝑥 = 0                                                                 (0.3.7) 

 

 

This equation describes simple harmonic motion or free undamped motion.  

Where 

ω2 = frackm                                                                                (0.3.8) 

 

Two obvious initial conditions associated with 

x(0) = x0                                                                                      (0.3.9) 

 

and 

x(´0) = x0                                                                                   (0.3.10) 

 

The initial displacement and initial velocity of the mass, respectively. For example, if 

x0 > 0, x0 < 0                                                                          (0.3.11) 

 

The mass starts from a point below the equilibrium position with an imparted upward velocity [6]. When 

x(´0) = 0                                                                                  (0.3.12) 
 

0.1.2 EQUATION OF MOTION 

To solve equation (2) we note that the solutions of its auxiliary equation: 

m2 + ω2 = 0                                                                                      (0.3.13) 

 

are the complex numbers: 

m1 = ωi                                                                                           (0.3.14) 

m2 = −ωi                                                                                           (0.3.15) 

 

we find the general solution of 

 

ⅆ2𝑥

ⅆ𝑡2 + 𝜔2𝑥 = 0                                                                 (0.3.15) 

to be 

 

x(t) = c1cosωt + c2sinωt                                                             (0.3.17) 

 

The period of motion described 

𝐼 =
2𝜋

𝜔
                                                                                                          (0.3.18) 

 

The time it takes the mass to complete one cycle of motion, expressed in seconds, is represented by the number 

T. One full oscillation of the mass is called a cycle. 

 

𝐼 =
2𝜋

𝜔
                                                                                                          (0.3.19) 

 

 

The frequency of motion is 

 

𝑡 =
1

𝑇
=

𝜔

2𝜋
                                                                                      (0.3.20) 

and is the number of cycles completed each second. 

 

The number 

𝜔 =
𝑟𝑘

𝑚
                                                                                                          (0.3.21) 

 

 

(expressed in radians per second) is the system's circular frequency. Whichever text you choose to read, both 
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f = ω/2πandω                                                                               (0.3.22) 

 

are also referred to as the natural frequency of the system. 

 

0.1.3 FREE DAMPED MOTION 

Assume that this force is provided by a constant multiple of dx for the duration of the discussion that follows. 

This derives from Newton's second law when the system is not subjected to any additional external pressures [5]. 

𝑚
ⅆ2𝑥

ⅆ𝑡2 = −𝑘𝑥 − 𝛽
ⅆ𝑥

ⅆ𝑡
                                                                 (0.3.23) 

 

 

 

Divid this equation by m will get: 

ⅆ2𝑥

ⅆ𝑡2 + 2𝜆
ⅆ𝑥

ⅆ𝑡
+ 𝜔2𝑥 = 𝐹(𝑡)                                                                 (0.3.24) 

 

 

Where: 

𝐹(t)=
𝑓(𝑡)

𝑚
                                                                                 (0.3.25) 

 

 

and 

2𝜆 =
𝛽

𝑚
                                                                               (0.3.26) 

 

 

We have two options for solving the latter nonhomogeneous equation: changing the parameters or using the 

approach of undetermined coefficients. 

 

0.1.4 DRIVEN MOTION 

DAMPING AND DRIVEN MOTION DETECTION Let us now assume an external force f (t) applied to a mass 

on a spring that is vibrating. For instance, f (t) can stand for a driving force that causes the spring support to oscillate 

vertically. 

 

0.1.5 TRANSIENT AND STEADY-STATE TERMS 

When F is a periodic function, such as 

F (t) = F0 sin γt                                                                              (0.3.27) 

Or F (t) = F0 cos γt                                                                       (0.3.28) 

the general solution of for λ > 0 

 

0.1.6 DE OF DRIVEN MOTION WITHOUT DAMPING 

In any oscillatory mechanical system, a periodic impressed force with a frequency close to or equal to the 

frequency of free undamped vibrations can be extremely problematic in the absence of a damping force [5]. 
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RESULT AND DISCUSSION 
An oscillatory system that is subjected to damping experiences an influence that lessens, restricts, or eliminates 

oscillations. This work proposes a one-step sixth-order computing approach for solving second order free damped and 

undamped motions in mass-spring systems. A continuous computational hybrid linear multistep technique was created by 

using the interpolation and collocation of power series approximate solution. This method was then evaluated at grid 

locations to provide a continuous block method. When the continuous block technique was assessed at particular grid 

points, the resulting discrete block method was obtained. Investigations into the method's fundamental characteristics 

revealed that it was zero-stable, consistent, and convergent. 
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