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Abstract  Review Article 
 

In this paper, we study an anisotropic cosmological model in scalar tensor theory of gravitation proposed by Brans-

Dicke, considering a Bianchi type- II  spacetime geometry filled with a macroscopic body. To solve the nonlinear Brans-

Dicke field equations by using the average scale factor and the relation between metric coefficients, with a radiation 

universe, we obtained exact solutions for the metric functions and scalar field. We derive and analyze several key 

cosmological parameters as functions of redshift, including the Hubble parameter, expansion scalar, shear scalar, energy 

density, pressure and the Brans-Dicke scalar field. The evolution of these parameters is graphically illustrated, revealing 

that the model predicts an expanding universe with dynamics transitioning from an early decelerating phase to a late-

time acceleration. The behavior of the deceleration parameter supports the accelerated expansion in accordance with 

current observational data. Furthermore, we investigate higher-order cosmological diagnostics such as the jerk and snap 

parameters as well as the statefinder parameters ( ),, sr  which are instrumental in distinguishing this model from the 

standard CDM  cosmology and other dark energy models. We also explore the Om diagnostic to characterize dark 

energy evolution and compare our theoretical Hubble parameter values with a compilation of 57 recent Hubble dataset 

points obtained from differential age (DA) and baryonic acoustic oscillation (BAO) methods. A good agreement is 

observed between the model predictions and observational data, as indicated by the best-fit curve with minimal root 

mean square error. 

Keywords: Bianchi type- II , Brans-Dicke Theory, Macroscopic Body, Cosmological Parameter. 
Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 

author and source are credited. 

 

1. INTRODUCTION 
The Brans-Dicke theory [1] is the most natural 

choice as the scalar-tensor theory, which can be 

considered as a pioneer in the study of scalar-tensor 

theories, the inclusion of Mach’s principal led to the 

advent of this theory. This can be called the first-ever 

theory of gravity, where the metric tensor represents the 

dynamics of spacetime and the scalar field describes the 

dynamics of gravity. The Brans-Dicke theory describes 

the recent accelerated expansion of the universe and 

accommodates the observational data. In this theory, the 

scalar field  is time-dependent, it is analogous to

18 −G . Therefore, in Brans-Dicke scalar-tensor theory, 

the scalar field  couples to the gravity with a 

dimensionless coupling parameter . Many authors 

have discussed several aspects of Brance-Dicke theory 

viz., Sharma et al.,, [2], Ahmadi-Azar et al.,, [3], Mishra 

et al.,, [4], Santhi et al.,, [5], Satyanarayana et al.,, [6], 

Gaidhane et al.,, [7], Bamba et al.,, [8], Nimkar et al.,, 

[9], Halife caglar [10], Vijayasanthi et al.,, [11-12], 

Kapse et al.,, [13], Bhardwaj et al.,, [14], Trivedi et al.,, 

[15], singh et al.,, [16 -18], Saha et al.,, [19], Shaikh et 

al.,, [20], Rani et al.,, [21], Pawar et al.,, [22], Tirandari 

et al.,, [23], Rao et al.,, [24], Chirde et al.,,[25-26], Pawar 

et al.,, [27-28], Reddy et al.,, [29-30], Wankhade et al.,, 

[31], Vidyasagar et al.,, [32-33], Ghate et al.,, [34], 

Adhav et al.,, [35-36]. 

Brans- Dicke field equations for combined scalar and 

tensor fields are  

https://saspublishers.com/sjpms/
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Where RgRG ijijij
2

1
−=  is an Einstein tensor, ijT  is 

the stress-energy tensor of the matter,   is the 

dimensionless coupling constant, comma and semi-colon 

denote partial and covariant differentiation respectively. 

In addition, we have energy conservation equation. 

0; =ij

jT                              (3)  

This equation is a consequence of the field equations (1) 

and (2).  

 

Bianchi-type model have been studied by 

several authors in an attempt to understand anisotropy in 

the universe. The same models have also been used to 

examine the role of certain anisotropic sources during the 

formation of the large-scale structure in the universe 

today. Tinker [37], Chirde et al., [38], Bhoyar et al., [39], 

Sharma et al., [40], Singh et al., [41-42], Pradhan et al., 

[43], Agarwal et al., [44], Singh et al., [45], Banerjee et 

al., [46] are some of the authors who studied Bianchi 

type II cosmological model. Also, Wath et al., [47], have 

obtained stability of macroscopic body cosmological 

model in Ruban’s background. Nimkar et al., [48], have 

Studied Stability of cosmological model in self- creation 

theory of gravitation. Hadole et al., [49], has examined 

the microscopic body cosmological model. 

 

The current work aims to get a Bianchi type- II  

cosmological model with Brans-Dicke theory of 

gravitation in the presence of a macroscopic body. The 

present paper is organized as follows. In section 2, 

Metric and field equations. Section 3, Solutions of field 

equations, Section 4, is mainly concerned with the 

physical and kinematical properties of the model, and the 

last section contains conclusions. 

 

2. Metric and Field Equations 

Consider the metric for Bianchi type-II Space-time in the general form  

( ) 22222222 dzCdyBzdydxAdtds −−−−=        (4) 

Where the metric potentials BA, and C are functions of cosmological time .t  

 

The energy-momentum tensor for a macroscopic body (Landau L.D. and Lifshitz E.M.) [50] is given by  

( ) ikkiik pguupT −+=                                     (5) 

Here p is the pressure,  is the energy density and iu  is the four-velocity vector of the distribution, respectively. From 

eq. (5) we have  

,3
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The trace of the energy-momentum tensor is given by  

+−=+++ pTTTT 34

4

3

3

2

2

1

1                          (7) 

 

Using the eq. (1), (2) and (5)-(7), the field equations for metric (4) are  
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By solving eq. (2) we get, 
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and the eq. (3) takes the form  
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Where, the upper suffix dot denotes differentiation with respect to t .  

 

3. Solutions of Field Equations 

The above four independent eq. (8) to (11) are highly nonlinear consist of six unknowns pCBA ,,,,  and . To 

get a determinate solution, we require two conditions; the relation between metric coefficients, i.e., 
mAB = and 

nAC =  

where m  and n are arbitrary constant and the equation of state by Singh [41]. 

 

The average scale factor ( )ta  and proper volume V  for Bianchi Type II Space-time are as follows: 
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Directional Hubble parameters 

 
C

C
H

B

B
H

A

A
H zyx


=== ,,               (16) 

Average Hubble Parameter 
a

a
H


=         (17) 

Scalar expansion H3=                          (18) 
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Now, consider a generalized linearly varying deceleration parameter (Akarsu and Dereli)[51]. This is as follows; 

1
2

−+−=−= rt
a

aa
q




                 (20) 

Where 0r  and 0  are constant and 0=r  reduces to the law of Berman [52], which yields models with constant 

deceleration parameters. 
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Bianchi type II  metric for this model takes the form,  
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4.  The Physical and Kinematical Properties of the Model 

Redshift is a highly significant and often contentious phenomenon regarding cosmology and astronomy. When 

electromagnetic radiation from an object is directed towards the less energetic regions of the spectrum, a phenomenon 

known as the shift in electromagnetic radiation occurs. We utilized this phenomenon to get insight into aspects of our 

galaxy and even the whole universe. The relation between average scale factor a  with redshift z are connected through 

the relation is 

( )
( )ta

ta
z 01 =+                         (26) 

Where ( )ta0  is the present value of the scale factor, take ( ) .10 =ta  using eq. (21) and the relation ( )
z

ta
+

=
1

1
 with 

z  being the redshift gives us the following relation:  
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In this section, we have estimated and determined significant cosmological quantities in connection to redshift. 

These computations aid our understanding of the expansion of the universe, energy distribution, and the effects of many 

components at various redshifts.  
 

The key cosmological parameters, Hubble parameter ( )H , expansion scalar ( ) , shear scalar ( )2  in terms of 

redshift are calculated as
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Fig.1 Expansion Scalar Vs. redshift 

152.64,743.0,5.02 === k  

Fig.2 Shear Scalar Vs. redshift 

152.64,743.0,5.02 === k  

 

From Fig.1 it is observed that the scalar 

expansion ( )z  grows rapidly as we go back in time 

(higher redshift), indicating a faster-expanding early 

universe. Lower values of the parameter 2k correspond 

to significantly higher expansion rates, suggesting that 

2k controls the intensity of expansion. As 2k  increases, 

the expansion is more moderated. This behavior supports 

a dynamic expansion history, potentially linked to dark 

energy or modified gravity effects influencing the 

cosmic evolution. Fig. 2 The graph shows the variation 

of shear scalar 
2  with redshift z  for different values 

of 2k  as z  increases, 
2  increases, indicating that the 

universe was more anisotropic in the past. At present (z 

= 0), 
2  is minimal, suggesting a nearly isotropic 
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universe today. Lower values of 2k  result in higher
2

meaning stronger anisotropic effects in the early 

universe. As 2k  increases, anisotropy decreases. This 

reflects that the universe has evolved from a highly 

anisotropic phase to a more isotropic one over time. 
 

Also, the Scalar field is as follows 
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Fig. 3: Scalar field Vs. redshift 152.64,1,5.0 32 === kk  

 

From fig (3), it is observed initially 2k  at low redshift 

(near present),  is close to zero for all 2k  values, 

indicating a stable universe. As redshift increases,   

becomes more negative, especially for lower 2k , 

showing stronger dynamical evolution in the early 

universe. For 25.02 =k , the drop is steep, suggesting a 

rapidly changing cosmic behavior in the past. For higher 

2k  the change is minimal, pointing to a more stable early 

state. The graph implies that the value of 2k  

significantly affects the universe’s expansion history. 

Pressure and energy density are given by  
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Where, ( ) ( ) mnnnmm +−+−= 111             



 

    

M.R. Ugale et al, Sch J Phys Math Stat, Sep, 2025; 12(8): 357-368 

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          362 

 

 

 

Fig 4. Pressure p and Energy Density  vs redshift z . 

1,,1.0,152.64,743.0,1,5.0 32 ======= nmkk   

 

From fig. (4) We can observe that both pressure 

( )zp  and energy density ( )z  increase sharply with 

redshift z  especially beyond 5.2z  this indicates that 

the early universe was extremely dense and energetic. As 

redshift decreases, i.e., the universe evolves, both ( )zp  

and ( )z  decrease, suggesting a cooling and expanding 

universe. The energy density ( )z  is consistently 

greater than pressure ( )zp , showing it dominates the 

dynamics. At present (low z), both values are very low, 

pointing toward a diluted universe. This behavior aligns 

with a universe that began in a hot, dense state and is now 

expanding and cooling. 

 

4.1 Deceleration Parameter 

The acceleration of the universe can be 

quantified through a dimensionless cosmological 

function known as the ‘deceleration parameter’. Solving 

eq. (20) by using eq. (27) in terms of redshift is given by  

( )







+−
+

−−=
rk

z

rk
zq 12

1
1)(        (34) 

 

The deceleration gives a measure of the rate at 

which the expansion of the universe is taking place. The 

positive sign of q corresponds to the standard 

decelerating model, whereas the negative sign of q

indicates inflection and 0=q the expansion of the 

universe at a constant rate. 

 

Fig. 5: Deceleration Parameter Vs. redshift for 1.0,152.64,743.0,11 ===−= rk   
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From fig. 5, we can observed that the 

deceleration parameter ( )zq  are in positive and almost 

constant for all values of .2k At low redshift ( ),0z a 

steep reduction in 75.02 =k indicates rapid early 

evolution. However, for all cases, ( ) ,0zq meaning 

the universe does not enter an accelerating phase. The 

curves immediately stabilize after a modest ,z indicating 

that deceleration remains almost constant at greater 

redshifts. This pattern implies that the universe is 

dominated by matter or similar stuff, with no influence 

from dark energy or cosmic acceleration. 

 

4.2 Jerk Parameter 

The jerk parameter ( )j is defined as  

dt

ad

aH
j

3

3

1
=                     (35) 

Where, a is dimensionless and third derivative of the 

scale factor with respect to redshift z  The transition of 

the universe from decelerating to the accelerating phase, 

for various models of the cosmos, has a variation in the 

transition of the universe whenever the jerk parameter 

lies in the positive region and the deceleration parameter 

lies in the negative region. Visser [53] Rapetti et al., [54] 

showed that for the flat CDM  model, the value of 

jerk becomes unity. 

 

For solving eq. (35) we get 
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4.3 Snap Parameter ( )S  

The snap parameter, denoted as ( )s , captures 

the rate of change of jerk with time and is expressed as 

4aH

a
s


=                                 (37) 

While the snap parameter is less commonly 

discussed compared to deceleration and jerk, it offers 

valuable insights into the finer details of cosmic 

dynamics, especially in scenarios where precise 

measurements are crucial for testing theoretical 

predictions. These parameters collectively provide a 

comprehensive framework for characterizing the 

evolution of the universe and investigating the 

underlying physics governing its behaviour. 

 

Solving eq. (37) we get, 

( ) 444

4

2

4

1
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+

+
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
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z

k
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4.4 Statefinder Diagnostic 

Statefinder diagnostic parameters are 

dimensionless quantities used in cosmology to 

characterize the evolution of the universe and provide 

insights into the nature of dark energy in the universe. 

The dark energy models can be detected with the help of 

the state finder diagnostic pair sr, which gives us an 

idea about the geometrical nature of the model. Sahni et 

al.,[55], Alam et al.,[56]. This geometrical pair is 

represented as ( )sr, , and are formulated as  

3aH

a
r


=  & 









−

−
=

2

1
3

1

q

r
s

         (39) 

Where r  is the same as that of the jerk parameter and s

is the combination of r and s  the deceleration 

parameter q . These statefinders defines CDM and 

standard cold dark matter (CDM), respectively. 

However, 0s  and 1r  constitute the dark energy 

regions such as phantom and quintessence, 0s  and 

1r  give the Chaplying gas model. We have obtained 

expressions for the statefinder diagnostic pair ( )sr,  for 

the models Bianchi type- II , which is given by  
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4.5 Om ( )z  diagnostics 

The starting point for Om ( )z diagnostics is the Hubble 

parameter, it is defined as  

( )
( ) 11

1

3

2

0

−+

−
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
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z

H
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z

          (41) 

Thus, ( )zOm involves only the first derivative of the 

scale factor through the Hubble parameter and is easier 

to reconstruct from observational data gives 
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4.6 Hubble Datasets 

Measurement of dt  yields the Hubble 

parameter, which is independent of the model, as the 

Hubble parameter is also related to the differential 

redshift, as ( )
( ) dt

dz

z
zH

+
−=

1

1  where dz  is acquired 

from the spectroscopic surveys. Actually, there are two 

common approaches to determining the Hubble 
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parameter values ( )zH  at a given redshift: a differential 

age (DA) and the line-of-sight baryonic acoustic 

oscillation (BAO) datasets. The 57 newest ( )zH  data 

points in the redshift range of 36.2070.0  z  

provide observational constraints on parameters 

( ).10 += H  The DA technique was used to collect 

31 points, the BAO technique was used to collect 26 

points. A list of 57 ( )zH  values in the redshift range 

36.2070.0  z  has been proposed in [57-58] (see 

Table 1). We found the best-fit curve of ( )zH  with 57 

data values shown in Table 1, using the testR −2
:  

( ) ( ) 

( ) ( ) 



=

=

−

−

−=
57

1

2

57

1

2

2 1

i
meaniobsi

i
thiobsi

HH

HH

R       (43) 

The testR −2
 examines how much of the universe in 

the dependent variable can be explained by the 

independent variable. Regarding the values of model 

parameters ,0H and   in relation to the observatory 

Hubble dataset (HOD), a 12 =R denotes an exact fit. To 

determine the optimal values of ,0H and  , we limit 

the parametric spaces z−1  and .0  For 

,8.67 11

0

−−= MpckmsH  3.0=m and 7.0= , 

the error bars show the mean point and how far it is from 

the mean across 57 points of the Hubble dataset 

( ) ( ) .1
3

0 ++= zHzH m
 Here, m and   

are the density parameters of dark matter dark energy, 

respectively. For appximate values of 

,743.0,152.64,49.64 024.0

024.0

118.1

118.1

33.0

32.00

+

−

+

−

+

− === H

we obtain the best-fit plot with a maximum of 

9321.02 =R  and a root mean square error (RMSE) of 

11.071. 

 

z  ( )zH  H  Ref. z  ( )zH  H  Ref. 

0.070 69 19.6 [59] 1.750 202 40 [60] 

0.90 69 12 [60] 1.965 186.5 50.4 [65] 

0.120 68.6 26.2 [59] 0.24 79.69 2.99 [66] 

0.170 83 8 [60] 0.30 81.7 6.22 [67] 

0.1791 75 4 [61] 0.31 78.18 4.74 [68] 

0.1993 75 5 [61] 0.34 83.8 3.66 [66] 

0.200 72.9 29.6 [62] 0.35 82.7 9.1 [64] 

0.270 77 14 [60] 0.36 79.94 3.38 [68] 

0.280 88.8 36.6 [62] 0.38 81.5 1.9 [69] 

0.3519 83 14 [61] 0.40 82.04 2.03 [68] 

0.3802 83 13.5 [63] 0.43 86.45 3.97 [66] 

0400 95 17 [60] 0.44 82.6 7.8 [70] 

0.4004 77 10.2 [63] 0.44 84.84 1.83 [68] 

0.4247 87.1 11.2 [63] 0.48 87.79 2.03 [68] 

0.4497 92.8 12.9 [63] 0.51 90.4 1.9 [69] 

0.470 89 34 [64] 0.52 94.35 2.64 [68] 

0.4783 80.9 9 [63] 0.56 93.34 2.3 [68] 

0.480 97 62 [59] 0.57 87.6 7.8 [71] 

0.593 104 13 [61] 0.57 96.8 3.4 [72] 

0.6797 92 8 [61] 0.59 98.48 3.18 [68] 

0.7812 105 12 [61] 0.60 87.9 6.1 [70] 

0.8754 125 17 [61] 0.61 97.3 2.1 [69] 

0.880 90 40 [59] 0.64 98.82 2.98 [68] 

0.900 117 23 [60] 0.73 97.3 7.0 [70] 

1.037 154 20 [61] 2.30 224 8.6 [73] 

1.300 168 17 [60] 2.33 224 8 [74] 

1.363 160 33.6 [65] 2.34 222 8.5 [73] 

1.430 177 18 [60] 2.26 226 9.3 [75] 

1.530 140 14 [60]     
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Fig 6. Hubble parameter )(H  Vs. redshift )(z along with Hubble data set given in Table 1. 

 

Fig. (6), it is observed that the Hubble 

parameter ( )zH  increasing with redshift z , indicating 

that the universe expanded faster in the past. At low 

redshift, the expansion slows down, showing late-time 

acceleration. The observational Hubble data (red points) 

generally agree with both the CDM  model (blue 

line) and the best-fit model (green dashed line). This 

confirms the accelerated expansion of the universe due 

to dark energy. The CDM  model fits well across the 

full redshift range. The large error bars at higher z  

indicate observational uncertainties. Overall, the 

universe transitions from decelerated to accelerated 

expansion over time. 

 

CONCLUSION  
In this paper, we investigated the Bianchi type

II space time cosmological model in scalar tensor 

theory of gravitation proposed by Brans-Dicke theory 

with a microscopic body. To solve the Brans-Dicke field 

equation by using the relation between metric potential 

and radiation of universe. Also, using a generalized law 

for the deceleration parameter, this allows for a time-

varying deceleration scenario. And then we obtain exact 

solutions for the metric functions and scalar field. 

 

The cosmological parameters, including the 

Hubble parameter, expansion scalar, shear scalar, energy 

density, pressure, and scalar field, are determined as 

redshift functions. The Hubble parameter, expansion 

scalar and shear scalar all increase with redshift, 

indicating the rapid early expansion of the universe. The 

scalar field grows increasing negative as redshift 

increases, indicating more dynamic gravitational 

influences in the early universe. Pressure and energy 

density both grow rapidly at higher redshifts and 

decrease over time, lending credence to the idea of a 

developing and cooling universe. From fig., (5) it is 

observed that deceleration parameter )(q  indicates 

whether the universe is accelerating or decelerating in its 

expansion. At ,0=z  the deceleration parameter )(q  is 

negative, which suggests that the universe is currently 

undergoing accelerated expansion. 

 

The analysis of jerk and snap parameters shows 

consistency with recent observational data and helps 

track the transition from deceleration to acceleration. The 

statefinder diagnostics utilizing the pair  sr,  indicate 

divergence from the CDM  model, implying that the 

model may capture effects connected with non-standard 

dark energy forms, such as quintessence. we have also 

obtained the Om diagnostics, which were a useful test for 

comparing the model to the conventional CDM  

model. Also, it is observed that best-fitted curve closely 

matched the data points when we compared the graph of 

the Hubble parameter with the Hubble dataset, we use a 

collection of 57 observational Hubble parameter data 

points that were gathered using BAO and differential age 

approaches in order to evaluate the theoretical model. 

The observational feasibility of the model is confirmed 

by the best-fit curve, which displays excellent agreement 

with a coefficient of determination R2 = 0.9321 and a root 

mean square error of roughly 11.07. 
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