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Abstract | Review Article

The world of scientific development turns more and more towards solutions, connected with chemistry, physics, and the
environmental science. This integrative review comprises evidence synthesis in the areas of nanotechnology and advanced
materials, wastewater treatment and environmental chemistry, renewable energy and electrochemistry, photonics and sensors,
artificial intelligence to science, and biomedical engineering. We chart gaps in research by recurring theme: understanding of
mechanisms at interfaces and defects not yet understood, measuring and benchmarking against interoperable standards,
scaling-up, manufacturing, and reliability under realistic load, data infrastructure, modeling, and uncertainty quantification,
design-through-deployment sustainability, safety, and ethics. In each field, bottlenecks of limited characterization of operando
operation linking nanoscale structure to device-level performance, lack of harmonized metrics that would allow cross-
laboratory comparison, and the lack of validated multiscale models that would allow bridging electronic or molecular
description with continuum behavior, are the most intractable. The main emerging opportunities in the field of physics-
informed machine learning, closed-loop automated experimentation, and openly shared datasets with a sound metadata and
provenance. Translators often have limited practice translation capacity due to weak process windows, sustained complex
matrix permanence, and inadequate exposure, equity, and end-of-life route consideration. The review concludes with the cross-
cutting roadmap, which underlines near-term interlaboratory studies and reference materials, medium term interoperable
datasets and reliable surrogate models and long-term integrated pilot testbeds which links performance targets and techno-
economic and life-cycle studies. The work will help align researchers, students, and sponsors with high-leverage problems and
reproducible solutions that grow the scientific understanding and allow to have a sustainable and real-world impact.
Keywords: Nanotechnology; Wastewater treatment; Renewable energy; Electrochemistry; Photonics and sensors; Artificial
intelligence; Machine learning; Biomedical engineering; Operando characterization; Uncertainty quantification;
Reproducibility; Life-cycle assessment; Techno-economic analysis.
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1. INTRODUCTION & METHODS
Scientific progress increasingly hinges on
cross-domain integration: the ability to connect
mechanistic understanding, comparable measurement,
robust data/ML practice, reliable scale-up, and
sustainability/ethics into one coherent workflow. Yet
between 2018 and 2025, evidence across physical, life,
and computational sciences shows recurring structural
gaps that slow discovery and reduce proposal
credibility—especially for students preparing theses and
applicants competing for scholarships. This review
synthesizes that evidence to provide a practical playbook
for early-career researchers: how to state a mechanism-
driven question, design standards-aligned methods,
evaluate models under realistic shifts, plan for scale-up
and reliability, and anticipate the sustainability and
governance constraints that funders increasingly require
(Khenkin et al.,2020; Page et al.,2021; Rethlefsen et
al.,2021; Collins et al.,2024; Barker et al.,2022; Sansone
et al.,2019; Ovadia et al.,2019; Schwartz et al.,2019,
2020; Cancela-Outeda et al.,2024; Antunes et al.,2024).

We organize the synthesis around five gap
types. First are mechanism gaps, where elegant
hypotheses lack decisive tests or neglect dominant cross-
couplings under realistic operating conditions. A vivid
case is photovoltaic stability: until the community
consolidated 1SOS-based procedures, mechanisms
behind efficiency loss were confounded by incomparable
stressors, uncontrolled ambient conditions, and the
entanglement of ionic and electronic processes. The 2020
consensus statement reframed stability as a protocolized,
reportable construct, turning anecdotal degradation into
comparable evidence (Khenkin et al.,2020). The lesson
generalizes: if mechanisms are not probed under
standardized, documented  conditions,  cross-lab
comparisons—and therefore cumulative progress—stall.

Second are measurement/standards gaps, when
similar questions are pursued with incompatible
protocols or partial reporting. At the review level,
PRISMA 2020 modernized evidence reporting
(eligibility criteria, study flow, risk of bias), while
PRISMA-S specified how searches must be documented
(databases, full strings, dates, filters, deduplication),
enabling independent reproduction of the evidence base
(Page et al.,2021; Rethlefsen et al.,2021). For prediction
models, TRIPOD+AI raised the floor on transparency
across regression and ML, emphasizing data provenance,
handling of missingness, calibration, and decision-
analytic evaluation (Collins et al.,2024). Together, these
frameworks convert “methods” from narrative
description to auditable record—a shift that selection
panels explicitly reward.

Third are data/ML gaps, including dataset shift,
leakage, and missing uncertainty quantification. Large
comparative studies show that both accuracy and
calibration degrade under corruptions and distribution
shifts, and ad-hoc fixes often fail; better practices include

explicit shift testing, uncertainty-aware modeling, and
clear separation of development and evaluation data
(Ovadia et al.,2019; Collins et al.,2024). For students,
this translates into concrete actions: pre-register splits
where appropriate, report calibration alongside
accuracy/F1, and document data lineage and
preprocessing so others can replicate or extend the work.

Fourth are scale-up/reliability gaps, where
impressive lab-scale results fail in deployment or cannot
be reproduced. Here, openness and artifact quality matter
as much as experimental design. Extending FAIR
principles from data to research software (FAIR4RS)
treats code, workflows, and containers as first-class
research outputs—findable, accessible, interoperable,
and reusable—so that results can be reused and audited
beyond a single machine or lab (Barker et al.,2022;
Sansone et al.,2019). Surveys of computational research
echo the same theme: reproducibility falters without
environment capture and executable documentation;
conversely, structured repositories and persistent
identifiers measurably improve reliability and uptake
(Antunes et al.,2024).

Fifth are sustainability/ethics gaps, which
increasingly determine what projects are fundable and
deployable. The Green Al agenda reframes efficiency—
energy, time, and hardware—as a research dimension on
par with accuracy, advocating transparent “price tags”
for compute and efficiency-aware model choices
(Schwartz et al.,2019, 2020). In parallel, risk-based
regulation (for example, analyses of the EU Al Act)
clarifies obligations for high-risk and general-purpose
Al, making governance plans (dataset stewardship,
documentation, impact/risk assessments) essential
components of credible proposals (Cancela-Outeda et
al.,2024). For students and scholarship applicants,
integrating these considerations signals operational
maturity and alignment with funder expectations.

Purpose and scope. Against this backdrop, the
purpose of this review is to map where cross-domain
gaps persist (2018-2025) and to translate community
guidance into actionable steps for student projects and
scholarship dossiers. The scope is deliberately
integrative: rather than exhaust domain-specific
minutiae, we foreground standards, protocols, and
evaluation practices that generalize across fields and can
be learned and applied in coursework, theses, and early
publications (Page et al.,2021; Collins et al.,2024;
Barker et al.,2022).

Framework. The five-gap scaffold functions as
a concept map that links explanatory depth (mechanism)
with comparability (measurement/standards), rigorous
inference  (data/ML), external validity (scale-
up/reliability), and societal constraints
(sustainability/ethics). Conceptually, this aligns with
transdisciplinary models of research that cycle through
co-learning, conceptualization, investigation,
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implementation, and reflection—ensuring that method
choices in one box (e.g., ML evaluation) are consistent
with realities in the others (e.g., field reliability or
governance) (Pineo et al.,2021).

Evidence synthesis. We followed PRISMA
2020 for reporting and PRISMA-S for search
transparency. Databases included Web of Science Core
Collection, Scopus, PubMed/MEDLINE, IEEE Xplore,
and ACM Digital Library, supplemented by official
registries and networks (PRISMA/EQUATOR,
FAIRsharing). The window was 2018-2025, English
language, covering peer-reviewed studies,
consensus/guideline documents, and major community
frameworks. Search strings combined domain and gap
constructs; examples include: (“mechanism*” OR
stability OR degradation) AND (protocol* OR “real-
world” OR field), (“reporting guideline*” OR PRISMA
OR TRIPOD OR FAIR4RS) AND (standard* OR
reproducib*), (“dataset shift” OR “uncertainty

out-of-

calibration””) AND (benchmark* OR evaluation), (scale-
up OR reliability OR reproducib*) AND (survey OR
guideline*), and (“Green AI” OR “carbon footprint””) OR
(“Al  Act” AND governance) (Page et al.,2021;
Rethlefsen et al.,2021). Titles/abstracts were screened
for relevance to at least one gap type and for
transferability (methods, standards, evaluations with
cross-domain utility). Exclusions were pre-2018 items
unless directly cited within a post-2018 update, non-
scholarly commentary lacking methodological content,
and duplicates. For each inclusion, we extracted domain,
study/guideline type, addressed gap(s), key contributions
(checklists, protocol steps, benchmark findings), and
adoption signals (citations, community endorsements).
To mitigate selection bias, we anchored the corpus on
consensus statements and comprehensive evaluations
(Khenkin et al.,2020; Page et al.,2021; Rethlefsen et
al.,2021; Collins et al.,2024; Sansone et al.,2019; Barker
et al.,2022; Ovadia et al.,2019; Antunes et al.,2024).
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Figurel: Transdisciplinary Research—Education Framework for Sustainability

The diagram places community at the center,
linking transdisciplinary research and education. A
sustainability challenge triggers TD education and joint
research between schools and out-of-school partners.
These collaborations build scientific literacy and
knowledge/competence, fostering responsible
citizenship. The pathway aims for community well-being
and sustainable development through socially accepted,
transformative solutions.

2. Nanotechnology & Advanced Materials
2.1. Synthesis — Scale-up: From lab routes to
continuous/green processes
Bench-top syntheses for nanocrystals, quantum
dots, and 2D flakes achieve tight control over size, phase,

and shape, but translation to kilogram-scale often fails
because batch reactors obscure heat/mass-transfer limits,
broaden residence-time distributions, and amplify
impurity carryover. Continuous-flow platforms narrow
those distributions, stabilize thermal profiles, and enable
in-line monitoring/feedback—improving dispersity and
run-to-run reproducibility compared with nominally
identical batch recipes (Kusada & Kitagawa, 2022). In
parallel, greener routes—biogenic reductants, lower-
toxicity or bio-based solvents, low-temperature
processing—reduce solvents and energy without
sacrificing performance when paired with process
analytical technology and design-of-experiments blocks
that map the true process window (El-Seedi et al.,2024).
Practically, students should (i) parameterize
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supersaturation/mixing/thermal ramps in small flow
reactors, (ii) insert analytical checkpoints for residuals
and unintended phases (e.g., ICP-MS, GC-MS,
XRD/FTIR), and (iii) quantify lot-to-lot variability with
replicated runs and statistical power.
Gaps: process windows; impurity control;
reproducibility.
2.2. Interfaces & Ligands: Stability in
air/water/biofluids

What sits on the surface governs performance
and safety. Ligands that stabilize colloids in dry storage
can desorb or exchange in humid air or aqueous/biofluid

media, reshaping charge, corona composition, and
reactivity. Operando probes—ambient-pressure
XPS/XAS, liquid-cell TEM, bias-dependent

optical/electrochemical spectroscopies—now track these
transformations in real time, replacing post-mortem
narratives with kinetic mechanisms (Wu et al.,2022;
Bergmann et al.,2019). To make studies comparable,
MIRIBEL provides minimum reporting for bio—nano
experiments (size distributions from TEM/DLS;
crystallinity;  concentration  units;  media/buffer
chemistry; dosing; zeta potential with pH/ionic strength;
aging/storage conditions), while FAIR-aligned efforts
encode such metadata for reuse across labs (Faria et
al.,2018; Barker et al.,2022; Sansone et al.,2019). Treat
zeta potential as a required stability readout
(protocolized prep, triplicates, drift over days—weeks)
and report explicit aging timelines with repeat
sizing/charge.
Gaps: operando characterization; universal reporting
(size, zeta, aging).
2.3. Defect Engineering: Defects — properties —
device reliability

migration, adsorption sites, and ultimately lifetime. The
perovskite PV literature offers a template: map
bulk/surface/interface defects to voltage loss, hysteresis,
and stability; then passivate or exploit specific states to
convert materials promise into reliable devices (Wang et
al.,2024; Khenkin et al.,2020). A credible pipeline
couples (i) multiscale models—DFT/MD for formation
energies and barriers feeding drift-diffusion/device
models under stress—with (ii) defect metrology
standards—common excitation conditions for PL/TRPL,
consistent trap-density extraction, and stability protocols
aligned to realistic operation.

Gaps: multiscale models; defect metrology standards.

2.4. Safety-by-Design: Exposure, fate, and risk early
in design

Safety and sustainability must be first-class
objectives, not afterthoughts. The EU Safe-and-
Sustainable-by-Design (SSbD) framework brings health,
environment, and circularity criteria into materials R&D
from the outset, while OECD work on nanomaterial test
guidelines harmonizes characterization, dispersion
protocols, dose metrics, and reporting so evidence travels
across sectors (Caldeira et al.,2023; OECD, 2023).
Predictive nano-QSAR/ML models are improving
alongside curated datasets, enabling early hazard
screening and prioritization of wet-lab tests; their
credibility depends on clear descriptors, documented
domain of applicability, and external validation under
realistic exposure matrices (Ammar et al.,2024). In
student projects, define plausible exposure routes
(inhalation/dermal/aquatic), preselect harmonized test
matrices (media, dose/time points), and log uncertainty
just like any performance metric.
Gaps: predictive tox models; harmonized test matrices.

Across  semiconductors,  catalysts, and
membranes, defects set non-radiative losses, ion
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Figure 2. Defect-to-device pipeline. Defect
passivation for perovskite solar cells—from molecule
design to device performance. The schematic links
chemical design (Lewis acid/base groups, zwitterions,

side-chain engineering, frameworks) to targeted defect
classes, showing how surface/bulk/interface passivation
suppresses non-radiative recombination and improves
device metrics (Wu, Li, Qi, Zhang, & Han, 2021).

Table 1: Cross-domain reporting checklist for nanomaterial studies (minimum to ensure comparability)

Category Report this (minimum) Notes/examples
Identity & Precursor grades/purity; stoichiometry; phase (XRD/Raman); | Include detection limits;
composition residuals/impurities (ICP-MS/GC-MS) note unintended phases

Size/shape/structure

Size distribution (TEM n>200; DLS hydrodynamic size);
morphology; crystallinity/defects (HRTEM/SAED;
TRPL/EPR as relevant)

Provide raw images and
analysis scripts

Surface & charge

Ligand identity and binding motif/coverage; zeta potential
with pH/ionic strength and dispersant

Standardize sample prep;
replicate across days

Environment & aging | Storage medium/temperature/light; aging timeline with
periodic re-measures of size/charge/absorbance

Record precipitation,
color/phase drift

Process conditions

Reactor type (batch/flow), temperature/pressure,
mixing/residence time, atmosphere; yield and mass balance

For flow, include residence-
time distribution

Reproducibility
statistical treatment

Independent repeats (>3), DoE/controls, lot-to-lot variability;

Share data and notebooks
(FAIR/FAIR4RS)

Interactions &

biointerface exposure route/scenario

Protein-corona protocol, media composition, endotoxin test;

Align to intended use and
guideline where possible

Safety &
sustainability

SShD stage; solvent/energy footprint; waste handling; hazard | Trace to OECD TGs or
screening (nano-QSAR + confirmatory tests)

validated alternatives

3. Wastewater Treatment & Environmental
Chemistry
3.1. Micropollutants/PFAS: Degradation pathways &
by-products

Micropollutants—including pharmaceuticals,
personal-care products, pesticides, endocrine disruptors,
and industrial additives—persist in waters at ng L™*—ug
L™t and frequently evade conventional treatment. Among
these, per- and polyfluoroalkyl substances (PFAS) are
outliers in persistence because the C—F bond (=485 kJ
mol™?) resists electrophilic attack and most PFAS have
surfactant-like mobility that frustrates capture. Modern
destruction strategies therefore bifurcate into oxidative
routes (*OH, SO,*~, reactive halogen species, photolysis)
and reductive routes (hydrated electrons e~aq, strongly
reducing cathodes/plasmas), with distinct intermediates
and by-products. Advanced oxidation processes (AOPS)
such as UV/H,0O,, UV/persulfate, and o0zone-based
systems work well for many aromatic micropollutants by
initiating hydroxylation, ring-opening, and carbonyl
formation; however, for fully perfluorinated moieties
these same conditions are inefficient and can even reveal
hidden PFAS loads by converting precursors into
terminal perfluoroalkyl acids (PFAASs). High-dose AOP
studies report measurable increases in short-chain
PFAAs (e.g., PFBA, PFPeA) despite apparent “removal”
of unidentified PFAS, underscoring the need for fluorine
mass balances rather than single-analyte removal (Ersan
et al.,2024). For non-PFAS micropollutants, the same
oxidation steps typically produce more polar fragments
that a downstream bio-polishing step can mineralize;
thus, for complex wastewaters, AOPs are most effective
when they create biodegradability rather than attempting
full mineralization in one unit.

The most compelling PFAS breakthroughs have
come from reductive chemistry. Hydrated-electron
systems (e.g., UV/sulfite) attack the a-C—F bond of
perfluoroacyl groups, triggering stepwise defluorination
and decarboxylation; carefully staged sequences achieve
substantial fluoride release and measurable carbon
mineralization in realistic matrices (Ren et al.,2021). A
milestone demonstration showed low-temperature
mineralization of perfluorocarboxylic acids by base-
mediated activation in polar aprotic media, initiating
cascades that ultimately vyield fluoride and benign
fragments—proof that PFAS defluorination can be
chemically engineered without resorting to near-thermal-
plasma extremes (Trang et al.,2022). Electrochemical
routes now combine anodic oxidation (e.g., boron-doped
diamond) for precursor destruction with cathodic or
paired-cell reduction to accelerate defluorination;
comprehensive  surveys from 2018-2025 detail
anode/cathode materials, cell hydraulics, faradaic
efficiency, and durability constraints that still define
scale-up feasibility (Xu et al.,2024).

Because by-products determine health risk and
process credibility, monitoring must extend beyond the
parent compound. For aromatic micropollutants, report
aldehydes, carboxylates, and short diacids generated
during partial oxidation, and couple these to
biodegradability surrogates (BOD/COD, biodegradable
DOC) to justify sequencing with biological steps. For
PFAS, track short-chain and ultrashort species (e.g.,
trifluoroacetic acid) and close the fluorine balance via
extractable organofluorine (EOF), total organofluorine,
and inorganic F~ so that mass is conserved even when
transformation pathways split (Aro et al.,2022; Jiao et
al.,2023; Ruyle et al.,2023). Nontarget high-resolution

[ © 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India [ 3713 |




Nisha Jabeen et al, Sch J Phys Math Stat, Nov, 2025; 12(9): 369-388

MS adds an early-warning layer for unexpected
transformation products and should be planned as a
periodic check rather than an ad-hoc last step (Bugsel &
von der Kammer, 2023).

Gaps—Kinetics in real matrices; toxicity of
intermediates. Rate constants measured in ultrapure
water typically overpredict removal in natural waters.
Natural ~ organic  matter ~ (NOM),  alkalinity
(HCO37/C0O3%7), and halides (CI7/Br~) scavenge radicals
or re-route  chemistry into  less  reactive
carbonate/halogen radicals; turbidity and chromophores
suppress UV fluence; metals and hardness create side
reactions that impose hidden oxidant demand. Matrix-
aware studies link these effects to energy demand (EE/O,
kWh m™) and to by-product formation that can negate
benefits (Li et al.,2022; Hlbner et al.,2024). To convert
this into practice, propose standard matrix panels—
DOC/UV254 tiers, alkalinity tiers, halide tiers, and
hardness tiers—and co-report intermediate toxicity using
effect-based  bioassays (e.g., oxidative  stress,
mutagenicity) so that “parent removal” does not mask
risk transfer. In short, destruction chemistry is viable, but
deployability hinges on kinetics and toxicology in the
water you will actually treat.

3.2. Hybrid Trains (AOP + Bio + Adsorption +
Membranes): Design rules & control

No single unit process is universally optimal for
micropollutant control; hybrid trains that exploit
complementary mechanisms routinely deliver higher
resilience and lower life-cycle costs. The core principle
is simple: use cheap, bulk steps to reduce UV shielding
and oxidant/quenching demand; deploy AOPs to cut
molecular “knots” that biology cannot; hand partially
oxidized fragments to biological units for mineralization;
polish with adsorption or membranes; and, for PFAS,
pre-concentrate and destroy in small volumes rather than
pushing raw flows through energy-intensive destructive
units. In potable reuse, the canonical sequence—
coagulation/filtration or biofiltration — UV-AOP (H,0,
or chlorine) — biological filtration or GAC—arose
because DOC and UV-absorbing chromophores choke
radical yield; reducing DOC upstream reduces EE/O and
by-product risk downstream (HUbner et al.,2024). For
halogenated precursors, it can be advantageous to place
biological steps before oxidative units to limit
halogenated by-products. For PFAS, adsorptive pre-
concentration with GAC or ion-exchange followed by
destruction  in  brines/RO  concentrates  (via
electrochemical oxidation or advanced reduction)
reliably lowers energy per m? treated while avoiding co-
contaminant parasitics (Xu et al.,2024).

Sequence optimization hinges on (i) matrix-
aware placement, (ii) controllability, and (iii)
benchmarkability. UV/chlorine AOP (UV/CI) illustrates
all three. Radical speciation (Cls, Cl,*~, *OH) and
quantum yields depend strongly on ammonia/chloramine
chemistry, pH, and optical path; utilities that manage

ammonia upstream or maintain chloramine steady state
see more stable UV/CI performance. A recent reuse-
focused synthesis laid out implementer guidance (lamp
selection, chlorine feed, ammonia management, by-
product surveillance), emphasizing that UV/Cl is a train
technology whose success depends on matrix
conditioning and downstream biofiltration to scavenge
oxidized fragments (Mackey, Hofmann, & Andrews,
2023; Chen, Mackey, & Andrews, 2024).

Design rules for control flow from a few
measurable surrogates. Use UV254 and fluorescence
EEMs to track aromaticity and adjust dose to a target
EE/O; maintain oxidant residuals and monitor
peroxydisulfate decay (if used) to infer radical
availability; and couple finished-water analytics (target
LC-MS/MS + periodic high-resolution nontarget) to
confirm that “removal” does not merely reshuffle risk.
For PFAS side loops, meter defluorination via F~ and
report total/extractable organofluorine to capture
transformation to ultrashort products. Control logic can
be automated: if UVT drops below setpoints, divert to
GAC or increase fluence; if oxidant residuals overshoot,
trim dose; if brine PFAS exceeds a breakpoint, activate a
destruction loop on regenerant streams. Photocatalytic
membranes, ozonation-MBR synergies, and catalytic
GAC show promise as reactive polishes, but gains shrink
without real-time monitoring of membrane resistance
growth and adsorber breakthrough.

Benchmarks—energy/chemicals per m3. Report
(i) EE/O for photochemical steps and kWh m™ for
electrochemical/plasma steps; (ii) oxidant dose (g m™3);
(iii) carbon cost (kg CO,e m™3) from electricity and
chemicals; and (iv) finished-water outcomes: parent +
sentinel transformation products (TPs), toxicity
endpoints, and for PFAS, % defluorination and EOF. The
IUPAC EE/O standard (Keen, Bolton, & Litter, 2018)
remains the common currency for cross-reactor
comparisons and should be cited with lamp type, path
length, UVT, and reactor hydraulics.

Gaps—sequence optimization;
energy/chemicals benchmarks. Most studies optimize
within a unit process; few optimize the whole train
against cost, energy, and carbon. Reported EE/O and
kWh m™ values often lack context (UVT, DOC,
alkalinity, halides), making cross-study comparisons
unfair. The field needs multi-site trials where identical
trains are evaluated across standardized matrix panels,
with co-reported EE/O, kWh m™3, oxidant stoichiometry,
and toxicity outcomes. Without that, utilities will
continue to “locally” optimize and miss system-level
minima.

3.3. Membranes & Fouling: Materials, pretreatment,
cleaning cycles
Pressure-driven membranes (MF/UF/NF/RO)
are the backbone of advanced trains because they offer
deterministic separation and permit compact, modular
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design. Their Achilles’ heel is fouling—a multi-
mechanism phenomenon encompassing particulate/cake
buildup, organic adsorption and pore blocking, inorganic
scaling, and biofouling. Since 2018, material advances
have targeted the first minutes of foulant-surface
encounter (surface chemistry, charge, roughness) and the
long tail of deposit maturation (hydrodynamics,
pretreatment, cleaning). Zwitterionic and PEG-like
coatings, nanocomposite skins (e.g., TiO,, graphene
oxide), and tailored polyamide chemistries can lower
adhesion energies and water contact angles, delaying the
onset of irreversible fouling. Ceramics offer higher
chemical/thermal tolerance, enabling aggressive clean-
in-place cycles. Yet field experience shows that
operating conditions and pretreatment matter as much as
surface science: inline coagulation, biofiltration, or
powdered carbon upstream can transform a fragile
system into a stable one by reducing foulant loading and
shifting foulant character (Hibner et al.,2024).

Cleaning must match foulant type and
membrane chemistry. For RO/NF, alkaline cleans target
organic/biofouling; acid cleans remove carbonate/silica
scalants; oxidants are potent but often incompatible with
polyamide unless carefully controlled; ceramics tolerate
harsher oxidants/temperatures. Good practice is to
maintain normalized specific flux and salt passage within
alarm bands and to blend scheduled cleans with
condition-based triggers (AP, flux-decline rate). Plants
increasingly deploy soft sensors and Al/ML predictors
trained on SCADA telemetry (flow, pressure,
conductivity, temperature, UV254) to forecast fouling
and recommend setpoint changes (crossflow, flux,
backwash/relax frequencies), but a common failing is
non-transferability across sites due to unshared datasets
and inconsistent influent reporting (Processes special
issue reviews, 2024). When AOPs precede membranes,
upstream radical chemistry can either help
(depolymerize macromolecules) or hurt (create sticky
fragments); sequence-specific pilot testing remains
essential before lock-in.

Gaps—anti-fouling predictors; long-term field
data. The literature is rich in lab-scale anti-fouling claims
but thin on multi-year, multi-site demonstrations.
Progress requires three things: (i) standardized challenge
panels that vary NOM (DOC/SUVA), divalent cations
(Caz*/Mg#"), silica, particulates, and biogrowth potential
to fairly rank membranes/coatings; (ii) open telemetry
corpora to benchmark ML predictors with agreed
inputs/targets (e.g., days-ahead TMP rise); and (iii)
harmonized cleaning taxonomies (chemistry, dose,
contact time, recovery) tied to material compatibility and
life-cycle impacts. Absent these, “anti-fouling” remains

a lab-specific label rather than a guarantee of stable
energy per m3 over years.

3.4. Real-World Variability: NOM/ions/co-
contaminants

Whether a promising bench recipe becomes a
reliable plant process is decided by the matrix: natural
organic matter (NOM), alkalinity, halides, hardness,
metals, particulates, and co-contaminants such as
ammonia or nitrite. Between 2018 and 2025, a consistent
picture emerged. NOM competes for photons, scavenges
radicals, and forms coronas on adsorbents and
membranes; alkalinity shifts radical equilibria, forming
carbonate radicals (COs”) with different selectivity;
halides (CI7/Br~) steer photo-halogen chemistry toward
reactive halogen species or brominated organics;
hardness/silica drives scaling; and co-contaminants
rewire oxidant demand and by-product spectra. Multi-
matrix AOP studies show order-of-magnitude swings in
apparent kinetics and EE/O across matrices that would
be indistinguishable by target load alone (Li et al.,2022).
UVI/CI specifically is matrix-sensitive: chloramine
photolysis pathways, ammonia/chloramine equilibria,
and pH all modulate radical speciation and therefore
energy demand and by-product risk; guidance for potable
reuse now treats ammonia management as a prerequisite
to stable UV/CI operation (Mackey et al.,2023; Chen et
al.,2024). Persulfate-based AOPs show a dual role for
NOM: at low concentrations, NOM can mediate electron
transfer or act as a photosensitizer; at typical watersheds’
DOC, NOM is an efficient radical scavenger (Luo et
al.,2024). Carbonate species can either buffer pH and
stabilize reactive oxygen species or divert *OH to less
reactive CO3+", depending on contaminant functionality
and dose (Rayaroth et al.,2023).

To make results transferable, embed Standard
Influent Panels into methods: at minimum, DOC/UV254
tiers (e.g., 1/3/6/10 mg L™t with SUVA bands), alkalinity
tiers (e.g., 50/150/300 mg L™ as CaCOs), halide tiers
(CI7 0-250 mg L7%; Br~ 0-0.5mg L), and hardness tiers
(Caz*/Mg?* 50-300 mg L™1). For UV-based steps, report
path length and UVT at the operating wavelength
(including 222 nm if far-UVC is used). Couple
performance to finished-water outcomes: parent +
sentinel TPs, effect-based bioassays for oxidative stress
and mutagenicity, and for PFAS, defluorination and
organofluorine balances. Finally, replicate a subset of
tests with reference NOMs (e.g., IHSS standards) so that
other labs can reproduce your “matrix corners.” Treating
the matrix as a design variable rather than a nuisance is
what enables generalizable design rules.
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Figure 3: Process-train decision tree (reference trains for potable reuse).

Representative treatment trains used in direct
potable reuse programs—e.g., (1) MF—-RO—AOP and
(2) 03;—>BAF—-MF/UF—-RO—AOP—provide a
backbone for decision-tree sequencing across AOP, bio,
adsorption, and membranes. Use this as the template for
branch choices driven by matrix tiers (UVT/DOC,
alkalinity, halides, hardness), target classes (aromatic vs.
PFAS), and energy/chemical benchmarks.

4. Renewable Energy & Electrochemistry
4.1. Batteries (Liquid & Solid): SEI/CEI chemistry;
chemomechanics

Electrochemical performance and safety in both
liquid-electrolyte Li-ion/Li-metal cells and solid-state
batteries are governed by the structure, chemistry, and
mechanics of interphases at anode (SEI) and cathode
(CEI). From 2018-2025, three converging insights shape
today’s design rules. First, solvation and reduction
pathways in the primary electrolyte determine SEI
composition and morphology; high-donor, fluorinated,
and localized-high-concentration electrolytes (LHCES)
bias reduction toward inorganic-rich, mechanically
robust SEls that suppress parasitic reactions and improve
Coulombic efficiency. Second, cathode—electrolyte
interphases  form  from  oxidative electrolyte
decomposition and salt anion participation, particularly
at high-Ni layered oxides and high upper-cutoff voltages;
CEl chemistry (e.g., M-F, oxyfluorides, sulfonates)
governs impedance growth, oxygen release, and
transition-metal dissolution. Third, chemomechanics—
volume change, stress generation, fracture of active
particles and interphases—co-drives aging, linking
reaction heterogeneity to crack networks that expose
fresh surfaces and accelerate SEI/CEI growth.

For solid-state batteries (SSBs), Li penetration
is now recognized as a mechanics-and-defects problem
coupled to electrochemistry. Above a critical current
density (CCD), Li can thread along grain boundaries,
pores, or mechanically weak interphases, even in “stiff”
ceramics; local stress concentrators, electronic leakage,
and void formation during stripping create conditions for
filament nucleation. Practical stability therefore depends
on (i) interphase engineering (lithiophilic interlayers;
halide/oxide buffers; reactive wetting to reduce voids),
(ii) microstructure control (dense electrolytes with low
porosity and benign grain-boundary chemistry), and (iii)
stack pressure and temperature that keep contact stable
without crushing brittle ceramics. In liquid cells,
analogous principles apply at softer length scales: SEI
elasticity and yielding modulate how Li plates/strips and
whether dendritic features are blunted or sharpened by
the interphase.

Testing gaps remain. Despite progress, we lack
standardized dendrite-onset descriptors that transfer
across chemistries and formats. CCD is helpful but test-
condition-sensitive (electrolyte thickness, temperature,
pressure, areal capacity, pulse shape). Imaging-backed
descriptors that report effective current density at
constrictions, interphase fracture energy, and void
evolution would translate better to pack-level risk.
Likewise, calendar vs. cycle aging is frequently
conflated. Calendar aging (open-circuit or low-rate
storage at set SOC/temperature) follows Arrhenius-type
kinetics dominated by SEI/CEI growth and transition-
metal dissolution; cycle aging superposes mechanical
stressors (lithiation-induced strain, shoulder reactions at
high  cutoff) and  electrochemical  stressors
(plating/stripping, oxygen redox). Harmonized protocols
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should therefore separate these modes (fixed SOC
ladders and temperatures for calendar; controlled depth-
of-discharge, C-rate, and rest profiles for cycling) and
report both with identical analytics (e.g., incremental
capacity/voltage analysis, gas evolution, impedance
spectroscopy) so models can disentangle mechanisms
instead of fitting lumped fade.

4.2. Electrolyzers & Fuel Cells: Catalysts—membrane
compatibility

Durability in PEM and AEM water
electrolyzers and PEM/alkaline fuel cells hinges on
chemical/thermal compatibility between catalysts,
ionomers, and membranes under realistic load cycles. In
PEM electrolyzers, OER catalysts (IrO-, doped oxides)
must resist transient high potentials, oxygen-rich
environments, and acidic attack;
dissolution/redistribution roughen catalyst layers and
thin electronic pathways. At the same time,
perfluorosulfonic acid (PFSA) ionomers and membranes
face radical-driven scission («OH, <OOH) and
dehydration-rehydration ~ cycles  that  embirittle
backbones. Catalyst layers must therefore be co-
designed with ionomer chemistry (side-chain length,
acid capacity, radical scavengers) and pore architecture
to sustain triple-phase boundaries without starving
reactants or trapping O,. In AEM electrolyzers, the
durability bottleneck shifts to alkaline stability of
cationic headgroups (e.g., quaternary ammonium [-
elimination), carbonate management, and transition-
metal dissolution/precipitation; matching catalyst
supports and membranes (e.g., corrosion-resistant
Ni/Fe/Co phases with stable poly(aryl piperidinium) or
spirocyclic AEMs) is central to lifetime.

For PEM fuel cells, start—stop and load-cycling
drive Pt and Pt-alloy dissolution, Ostwald ripening, and
carbon support corrosion, while ionomer/membrane
thinning accelerates peroxide/radical formation and
pinhole growth. Impurity tolerance—NH;, H,S, SO,
ClI~, trace metals—remains a practical constraint; even
ppb—ppm levels can poison active sites or shift reaction
selectivity, so pre-treatment, filters, and operating
windows (humidity/temperature) must be codified
alongside catalyst choices. Emerging ultra-low-Ir PEM
electrolyzers and PGM-free fuel-cell cathodes amplify
compatibility stakes: supports, binders, and membranes
must share electrochemical stability windows, gas/water
transport characteristics, and interfacial adhesion across
thermal and hydration cycles.

Gaps: (i) Durability under realistic load cycles
(start-stop, ramping, dynamic electrolyzer operation with
curtailed renewables) still lags steady-state tests;
protocols need drive-cycle profiles (potential, current,
RH, temperature) and synchronized analytics
(dissolution via ICP-MS, EIS impedance mapping,
tomography). (ii) Impurity tolerance libraries are
incomplete; systematic challenge matrices (ammonia,
sulfides, chlorides, silica, and transition metals at

technology-relevant ppb—ppm) tied to recoverability
(air/voltage hold, potential cycling) would convert one-
off poisoning studies into engineering rules. (iii)
Membrane—catalyst co-aging is under-reported; shared
tests that capture mutual degradation (radicals from one
layer attacking the other) will prevent incompatible
pairings from entering pilots.

4.3. PV & PEC Stability: Light/heat/humidity/bias
synergy

Device stability in photovoltaics (PV) and
photoelectrochemical (PEC) systems emerges from the
coupled action of light intensity/spectrum, temperature,
humidity/water, and electrochemical bias. In perovskite
PV, ion migration, interfacial reactions, and phase
segregation are accelerated by electric fields and thermal
stress; in Si and thin-film PV, metallization corrosion,
encapsulant browning, and potential-induced
degradation (PID) dominate. PEC devices layer
additional stressors: electrocatalyst corrosion, gas-
bubble management, and electrolyte reactivity at
photoelectrode surfaces. The 2018-2025 period
delivered two standardization thrusts. First, consensus
protocols for perovskite stability (ISOS) formalized
illumination, temperature, humidity, and maximum-
power-point tracking (MPPT) testing so results are
comparable beyond single-lab anecdotes. Second, PV
standards (e.g., IEC 61215-2) tightened damp-heat,
thermal-cycling, and UV exposure criteria, while PEC
best-practice papers stressed reporting of stability
metrics (e.g., time to 80% of initial photocurrent at 1-sun,
electrolyte composition, pH, bias, and gas analysis).

The central message is synergy: stressing one
axis at a time misleads. Elevated temperature often
stabilizes perovskite ion transport (reducing hysteresis)
yet accelerates decomposition and metallization
diffusion; humidity may passivate certain surfaces at low
levels but drives hydrolysis at high RH; bias stabilizes
MPPT performance in some architectures yet triggers
interfacial reactions elsewhere. Therefore, stability plans
should reflect operational ensembles (e.g., outdoor
diurnal cycling with irradiance/temperature/humidity
histograms), not single-point soaks. A credible outdoor
<> accelerated correlation requires matched spectra
(AM1.5G or measured site spectra), temperature cycling,
and encapsulation realism (glass/barrier choices, edge
seals). For PEC, stability must couple photocurrent
retention with Faradaic efficiency and gas crossover;
catalysts and protective layers must be compatible with
both electrolyte and illumination.

Gaps: (i) Cross-lab stability metrics remain
heterogeneous. Report PCE retention curves under
MPPT with identical binning (e.g., T, RH, irradiance),
plus activation/conditioning histories; harmonize failure
definitions (Tgo, Slope to knee point). (ii) Outdoor vs
accelerated correlations are under-documented: many
accelerated tests fail to replicate moisture/oxygen ingress
pathways or realistic UV/thermal cycles; structured
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round-robin campaigns with identical samples across
climates are needed. (iii) Bias-coupled stress (e.g., PEC
under load, PV under reverse bias hot-spots) lacks
standard recipes; include bias windows, duty cycles, and
current set-points in every stability report.

4.4. Thermal Management & Efficiency: Interfaces,
thermoelectrics
Across battery packs, power electronics,
electrolyzers, fuel cells, and PV/PEC balance-of-system,
thermal bottlenecks often set reliability and efficiency.
Two fronts dominate: thermal interfaces and phonon
engineering in disordered solids/complex alloys. On

(graphene/graphite, hexagonal BN, metal nanowires) in
compliant matrices have pushed through-plane
conductivities upward while maintaining low modulus to
conform to roughness; sintered metal TIMs and phase-
change TIMs reduce bond-line thickness further. Yet
metrology variance obscures fair comparison. Re-
adoption of ASTM D5470 (reapproved within 2018-
2025) and guarded-hot-plate variants—together with
reporting of pressure—thickness—temperature maps—is
restoring comparability. For field reliability, the key is
aging under compression/thermal cycling (pump-out,
dry-out, binder oxidation) and electrical properties
(leakage, dielectric strength) for packs and inverters;

interfaces, performance is governed by contact reporting  should couple thermal figures to
resistance—a convolutlor] of bulk TIM conductlv!ty, creep/relaxation and dielectric metrics.
bond-line thickness, wetting, roughness, and clamping
pressure.  Since 2018, high-conductivity fillers
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In phonon engineering, the focus has shifted
from perfect crystals to disordered crystals, complex
alloys, and amorphous networks where heat is carried by

Figure 4: Degradation/failure tree across electrochemical energy devices

a mix of propagons (wave-like phonons), diffusons
(diffusive vibrations), and locons (localized modes).
2018-2025 work leveraged alloy disorder, hierarchical
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nanostructuring, and rattler modes to depress lattice
thermal conductivity without catastrophically scattering
charge carriers—central for thermoelectrics. In parallel,
amorphous and hybrid materials for encapsulation and
membranes benefit from vibrational-mode engineering
that lowers k while preserving mechanical robustness
and barrier properties. For systems engineering, the
themes rhyme: (i) pursue low-x where heat needs to be
trapped (thermoelectric legs, thermal barriers), (ii)
pursue ultra-low contact resistance where heat must be
extracted (stacks, modules), and (iii) measure both with
traceable, standardized methods.

Gaps: (i) Contact-resistance standards must be
enforced in publications: specify test fixtures, clamping
pressure, surface finishes, bond-line thickness,
temperature, and aging, all per a recognized standard
(e.g., ASTM D5470-17(2022)). (ii) Phonon engineering
in disordered solids needs shared datasets linking
structure  (pair distribution functions, vibrational
densities of states) to x and mechanical/dielectric
properties, enabling inverse design. (iii) System-level
metrics—°C/W at interface + module thermal budget +
control policy—should accompany material data so
thermal upgrades translate to installed efficiency and
lifetime.

Tree-style breakdown of operating stressors
propagating to component-level mechanisms and
observable performance loss. Branches illustrate how
chemical/thermal/electrical stress drives interfacial
reactions (e.g., ionomer or membrane attack, catalyst
dissolution/redistribution), transport losses (gas/mass
transport limits, contact resistance), and mechanical
failure  (cracks, agglomeration), culminating in
symptoms such as impedance rise, voltage decay, and
efficiency loss. Although drawn for a PEM fuel cell, this
hierarchy maps directly to batteries (SEI/CEI growth, Li
penetration, contact aging), electrolyzers
(membrane/ionomer scission, catalyst shedding), and
PV/PEC devices (encapsulant/catalyst degradation,
series-R growth). Source (APA, no link): Foniok, K., et
al., (2025).

5. Photonics, Sensors & Optoelectronics
5.1. Perovskite LEDs/Detectors: lon migration,
blue/UV stability

Metal-halide perovskites have transformed
visible-light emitters and detectors, but device ceilings
are still set by ionic motion and interfacial reactivity
under coupled bias—light—heat stress. In LEDs, halide-
vacancy hopping and mobile A-site ions (MA*/FA*/Cs™)
distort the internal field, induce spectral drift, and
catalyze interfacial decomposition of transport layers;
the effect intensifies for blue/near-UV devices because
higher photon energy, Cl/Br-rich alloys, and quasi-2D
phase distributions amplify non-radiative pathways and
phase segregation (Li et al.,2022; Zhao et al.,2024).
Stabilizing the electric double layer using robust 2D/3D
heterostructures, halide-binding ligands, and low-

polarity, oxidation-resistant transport layers extends T sy,
yet deep-blue PeLEDs still exhibit luminance-dependent
drift (Li et al.,2022; Zhao et al.,2024).

Perovskite photodetectors show parallel
physics: high-field operation promotes ion migration,
dark-current growth, and interfacial redox, whereas
photovoltaic/zero-bias architectures using thick single
crystals or 2D perovskites suppress ion-migration-driven
instabilities and reduce noise, enabling long-term
imaging (Sakhatskyi et al.,2023; Liu et al.,2024).

Gaps—operando bias-light maps;
encapsulation chemistries. The field would benefit from
standardized operando maps that sweep bias, photon
flux/spectrum, temperature, and humidity while tracking
EL/PL spectra, EQE, dark current, and impedance to
decouple ionic from electronic dynamics (Li et al.,2022).
Encapsulation remains chemistry-limited: barriers must
block H,0O/0, and acidic volatiles while remaining ion-
inert under blue/UV; UV-hard silicones/urethanes,
stack-compatible  getters, and low-ionic-content
adhesives are promising but under-reported for PeLEDs
and detectors (Zhao et al.,2024).

5.2. Silicon Photonics & Packaging: Co-packaged
optics, reliability

At 51.2-102.4 Tb/s switch generations, co-
packaged optics (CPO) reduces electrical 1/0 loss and
energy/bit by co-locating photonics with the ASIC,
shifting reliability to a multi-material stack (PICs, 111-V
gain, micro-bumps, underfills/adhesives, LTCC/organic
interposers, TIMs, fiber attach). Primary risks mirror
advanced electronics packaging: CTE mismatch
concentrates strain at underfill and bump interfaces;
underfill chemistry and cure history govern moisture
uptake, modulus growth, and adhesion; and adhesive
bonds at fiber, microlens, and lid joints age via thermo-
oxidation, plasticization, and  moisture-assisted
hydrolysis (Bender et al.,2024; Gao et al.,2025). Device-
level constraints compound these risks—Ilaser
temperature windows, adhesive wicking near facets, and
3D-package warpage that perturbs fiber—waveguide
alignment—so cooling design (liquid cold plates; high-«
T1Ms) must be co-optimized with alignment stability and
material selection (Herrick, 2025; Gao et al.,2025).

Gaps—high-heat-flux materials; bond/adhesive
aging. Local heat fluxes near 1 kW cm=2 demand TIMs
combining sub-100-pum bond-lines, high through-plane
K, dielectric strength, and creep resistance—traits rarely
co-optimized in optical-grade materials (Gao et al.,2025;
Wu et al.,2025). Long-horizon aging datasets for
epoxies/silicones/hybrids under combined temperature—
humidity—optical flux are sparse, and “photonic
contamination” (outgassing, refractive-index drift,
fluorescence) lacks shared test recipes (Plachy et
al.,2025; Bender et al.,2024).
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5.3. Sensors (Electrochemical/Optical/Bio):
Selectivity & drift

Selectivity and drift are the twin constraints for
long-lived chemical and biosensors in real matrices
(biofluids, food, wastewater, air). Electrochemical
sensors encounter non-specific adsorption, redox
interferents, and biofouling; optical sensors contend with
background fluorescence, scattering, and
photobleaching. Two design philosophies have matured.
First, antifouling interfaces—zwitterionic brushes,
peptide/saccharide coatings, slippery composites,
hydrogels—sustain sensitivity by resisting protein and
cell adhesion without blocking transport (Kourti et
al.,2024).  Second, calibration-free/self-calibrating
readouts convert environmental fluctuation into
common-mode noise: ratiometric  signals, dual-
frequency or Kkinetic interrogation of electron-transfer
rates, and internal standards reduce apparent drift (Yang
et al.,2018; Abeykoon et al.,2024). ML-assisted filtering

and transfer learning now track drift, compensate matrix
shifts, and output uncertainty bands, pushing sensors
from one-off demos to deployable networks with
declared error bars (Zhao et al.,2025; Yan et al.,2024).

Gaps—antifouling surfaces; calibration-free
methods & UQ. Field-ready antifouling requires
standardized fouling challenges (protein panels, whole
blood/serum, wastewater fractions) and long-horizon
soaks with cyclic temperature and flow; many coatings
succeed in single-protein assays but fail against mixed
biofilms (Kourti et al.,2024). For calibration-free
sensing, pair ratiometric/kinetic readouts with formal
uncertainty quantification—e.g., hierarchical Bayesian
models or bootstrap confidence intervals that ingest raw
voltammograms  or  spectra, propagate  drift-
compensation steps, and report credible intervals rather
than point estimates (Abeykoon et al.,2024; Zhao et
al.,2025).

Capacitor TIA
[
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L X XX XK XK KX

Figure 5. Packaging stack reliability map (co-packaged optics cross-section as a reliability template)

Cross-sectional schematics of hybrid optical
packages on fan-out wafer-level platforms illustrate the
stacked materials and interfaces—PIC, driver/TIA,
LTCC/organic substrates, micro-bumps,
underfill/adhesives, and  optical attach—where
thermomechanical, moisture, and chemical stress
concentrate. Use this anatomy to map failure risks (CTE
mismatch, bond-line aging, delamination, and
fiber/connector creep) and to place sensors/controls for
prognostics.

Al FOR SCIENCE & DATA INFRASTRUCTURE
PHYSICS-INFORMED ML.:
CONSERVATION/CAUSALITY CONSTRAINTS
Physics-informed machine learning (PIML)
blends mechanistic priors with statistical learning so
models respect what we already know about nature while
still fitting complex data. The most common route
imposes soft constraints by adding PDE residuals,
boundary/initial conditions, or conservation penalties to
the loss; this is the logic behind physics-informed neural
networks (PINNs) and many of their successors. Because
the residual term couples predictions to differential

operators, the network “pays” for wviolating mass,
momentum, charge, or energy budgets, making it a better
citizen under sparse supervision and enabling inverse
problems (parameter identification, hidden forcing) as
naturally as forward simulation (Raissi, Perdikaris, &
Karniadakis, 2019; Karniadakis et al.,2021; Wu, Yu, &
Huang, 2024). A complementary route uses hard
constraints: architectures that are born conservative—
Hamiltonian/Lagrangian networks preserve symplectic
structure; divergence-free layers restrict flows; and
equivariant networks encode symmetries
(translations/rotations/parity) so small datasets are
amplified by group structure (Ma & Ma, 2023; Sanchez
Cruz et al.,2024).

Beyond state prediction, many scientific tasks
learn operators—maps from functions to functions (e.g.,
forcing — solution). Neural operators such as the Fourier
Neural Operator (FNO) and DeepONet learn these maps
directly and generalize across meshes, parameters, and
boundary conditions, providing orders-of-magnitude
speedups for surrogate modeling and design loops (Li et
al.,2021; Kovachki, Lanthaler, & Mishra, 2021; Lu et
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al.,2021). Operator learning also creates a natural place
to encode causal constraints: if we treat interventions
(boundary changes, source terms) as inputs, the learned
operator can be stress-tested with do-like perturbations
and penalized when it breaks invariants or yields non-
physical counterfactuals.

Small-data robustness hinges on three levers.
First, structure priors—symmetry/equivariance;
conservative layers; admissibility regions—shrink
hypothesis space so we need fewer labels. Second, multi-
fidelity training couples high-accuracy but scarce
simulations/experiments to coarse or inexpensive
models; consistency losses tie the scales together. Third,
active sampling targets the most informative experiments
or simulations using acquisition functions that explicitly
value physics residuals, uncertainty, or controllability.
When data are truly scarce, Gaussian processes with
physics-aware kernels or low-rank/Koopman models
still set strong baselines; their calibrated uncertainties
often outperform deep nets for extrapolation.

OOD detection is not optional in science.
Distribution shift appears whenever we change operating
conditions or apply a surrogate outside its training
envelope. Add runtime sentinels: (i) statistical detectors
(energy-based scores, feature-space distances, density
models), (ii) conformal prediction to produce calibrated
prediction sets/intervals with finite-sample error
guarantees, and (iii) physics monitors (PDE residuals,
conservation gaps, monotonicity and positivity checks).
The best practice is to fuse them: gate decisions on both
uncertainty and residual; when either is high, fall back to
a slower but trusted solver or trigger a new experiment
(Angelopoulos & Bates, 2023; Theunissen et al.,2025;
Zhao, Xu, & Wang, 2025).

Gaps—robust small-data learning; OOD
detection. Benchmarks still favor abundant labels or
synthetic data that share the generator with the test set.
We need small-N, non-i.i.d. benchmarks with
documented physics and held-out regimes to stress causal
and OOD claims. And we need reporting standards that
always ship uncertainty, residual diagnostics, and
decision rules, not just point accuracy (Wu et al.,2024).

5.4. Data Standards (FAIR): Schemas, metadata,
provenance
The FAIR principles—Findable, Accessible,
Interoperable, Reusable—now extend beyond datasets to
research software and entire workflows. FAIR4RS
reframes software as a first-class research object,
emphasizing persistent identifiers (DOIls, ORCID),
explicit licensing, machine-readable metadata, and
versioned provenance so computational results can be
reproduced and cited with the same rigor as samples or
spectra (Barker et al.,2022). On the data side, cross-
domain practice is coalescing around a few pillars:
e Community catalogs + schemas. For bioimaging,
OME-NGFF/OME-Zarr  delivers  cloud-native

chunked storage and common metadata that keep
3D/5D images FAIR at scale (Moore et al.,2021,
2023). In photon/neutron science, NeXus defines a
shared HDF5-based schema for instruments, events,
units, and experimental state, easing multi-facility
analysis. In materials science, NOMAD Metainfo
provides an extensible schema that harmonizes
computational and experimental records; FAIRmat
tutorials show how to author custom sections and
parsers so lab-native formats map to open
representations (Shailo et al.,2022).

e Provenance. The W3C PROV family (PROV-
DM/PROV-0) gives a standard vocabulary—
entities, activities, agents—to link raw inputs,
processing steps, and outputs. Recent “Common
Provenance Model” work demonstrates PROV-
aligned patterns that stitch together wet-lab,
simulation, and analysis steps so you can audit a
figure or a trained model end-to-end (Moreau &
Groth, 2013; Wittner et al.,2023).

e Packaging & exchange. RO-Crate wraps datasets,
software, and workflows into a machine-actionable
“crate” with JSON-LD metadata, making it trivial to
ship complete, citable research objects between
repos, HPC, and cloud (Soiland-Reyes et al.,2022).

e Open benchmarks. Discipline-specific, open
testbeds are the fastest path to shared progress:
Matbench curates 13 materials tasks with a public
leaderboard; the Open Catalyst datasets
(OC20/0C22) provide massive DFT relaxations and
energies for catalysis; and MLCommons Science is
pushing for standardized, FAIR benchmarks and
metadata across experimental sciences (Dunn et
al.,2020; Tran et al.,2023; MLCommons, 2024—
2025).

Gaps—cross-domain ontologies; open
benchmarks. Most schemas are domain-siloed; cross-
walks between, say, NeXus beamline logs and NOMAD
materials workflows, or OME metadata and reaction
notebooks, are ad hoc. We need cross-domain ontologies
(units, sample provenance, instrument states) and
profiles that pin down ambiguous fields (concentration
units; temperature ramps; uncertainty). On benchmarks,
communities like catalysis and materials have strong
public suites; others (electrochemistry, soft matter,
bioassay kinetics) need open, license-clean datasets with
defined splits, uncertainty labels, and reproducible
baselines.

5.5. Closed-Loop Labs & Automation: Active learning
in wet/dry labs

A closed-loop lab (a.k.a. self-driving lab) links
experiment, simulation, and ML into a continuous cycle:
plan — make — measure — learn — plan. In chemistry
and materials, modern platforms combine automated
synthesis/processing with active learning—most often
Bayesian  optimization (BO)—to explore high-
dimensional recipes with far fewer trials than grid search,
while respecting safety and resource constraints (Tom et
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al.,2024; Di Fiore et al.,2024). BO’s surrogate models
(Gaussian processes, ensembles, neural operators)
provide posterior means and uncertainty, and acquisition
rules (expected improvement, UCB, knowledge
gradient) trade off exploitation vs. exploration. For
discovery problems, generative models can propose
candidates that BO then prioritizes for synthesis, closing
the loop between generative design and physical
validation (Loeffler et al.,2024).

In practice, durable closed loops depend on two
under-appreciated  layers.  First is  instrument
interoperability. Orchestrating pumps, robots, sensors,
and analyzers across vendors requires standard
vocabularies and protocols. SiLA 2 (HTTP/2-based)
exposes device capabilities as services, enabling
discovery, control, and monitoring with consistent
semantics; the SiLA 2 Manager demonstrates multi-
device integration in real labs (Bromig et al.,2022). At
the protocol level, Autoprotocol and the newer
Laboratory Automation Protocol (LAP) specify steps in
a machine-readable way so recipes can be executed,
versioned, and audited across sites (Anhel et al.,2023).
Without these, active learners stall on glue code rather
than science. Second is data plumbing: results must be
written in FAIR formats with PROV-compatible
provenance and RO-Crates so experiments can be
replayed, branched, and peer-reviewed.

Uncertainty-aware optimization is the other
pillar. Scientific objectives are noisy, heteroscedastic,

and sometimes censored (e.g., failed synthesis, no
signal). Good loops (i) model measurement noise
explicitly; (ii) replicate adaptively where uncertainty is
high; (iii) incorporate constraints (toxicity, cost, process
limits) via probabilistic feasibility models; and (iv) use
robust BO to optimize worst-case or risk-aware
objectives across environmental variability (Foldager et
al.,2023). For hybrid wet/dry programs, multi-fidelity
BO fuses fast simulations (coarse DFT, empirical
models) with slower experiments and penalizes
simulation bias using learned discrepancy terms. Finally,
stopping rules should be statistical (credible gap to the
incumbent, expected regret thresholds), not ad hoc.

Gaps—instrument interoperability;
uncertainty-aware optimization. Vendor ecosystems still
fragment interfaces; even with SiLA 2 or
Autoprotocol/LAP, coverage is partial and feature
models diverge. Communities should publish capability
profiles (what verbs a device must speak), plus reference
implementations and  conformance tests. On
optimization, we lack benchmarks with real-world noise
and ground-truth optima where algorithms can be
compared fairly; many studies report one-off case studies
without uncertainty or feasibility accounting. The way
forward is shared open loops: simulated “digital twins”
with tunable noise + a few physical tasks anyone can run
(microfluidic synthesis, simple electrochemistry), all
shipped with schemas, provenance, and leaderboards.
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A closed-loop  Design—Build-Test—Learn
schematic showing ML proposing candidates with
uncertainty,  automated  instruments  executing
experiments, and results feeding back to update
models—exactly the flow for experiment < simulation
< ML with active-learning acquisition. Use this
anatomy to annotate your stack (e.g., SiLA
2/Autoprotocol/LAP control; FAIR metadata with
PROV/RO-Crate; multi-fidelity simulators providing
priors). Source (APA): Tamasi, M. J., & Gormley, A. J.
(2022). Biologic formulation in a self-driving
biomaterials lab. Cell Reports Physical Science, 3(9),
101041.

6. Biomedical Engineering & Biophysics
6.1. Biomaterial-lmmune Interface: Long-term
integration

Long-term integration of implants, scaffolds,
and wearable/ingestible sensors is governed by the
biomaterial-immune interface. Within minutes, a
dynamic protein corona forms and reorganizes; within
hours to days, neutrophils and monocyte-derived
macrophages interrogate the surface; over weeks to
months, fibroblasts and myofibroblasts can encapsulate
the device and throttle mass transfer—or, if properly
guided, promote constructive remodeling. Recent work
shows that immuno-instructive surfaces bias
macrophage phenotypes and limit fibrosis using
chemistry (e.g., zwitterions, catechols), topography
(nanoscale roughness), and controlled release of pro-
resolving mediators (Amani et al.,2024). Equally
important, mechanobiology shapes fate: macrophages
and fibroblasts sense stiffness and strain; stiffer or
constrained interfaces favor pro-fibrotic activation and
persistent foreign-body response (Ni et al.,2023). The
design rule is therefore twofold: tune both chemical cues
and mechanical boundary conditions to achieve durable
integration.

Scale and loading amplify failure modes.
Micromotion, curvature, and contact forces focus
stresses that recruit myofibroblasts and thicken capsules;
allometric analyses suggest that small-animal successes
may overestimate human performance unless loads and
geometry are matched (Padmanabhan et al.,2023).
Interface-focused solutions—such as adhesive anti-
fibrotic interlayers that conform to wet tissue and deliver
local cues—have reduced capsule formation across
multiple organs in vivo, pointing to interface engineering
rather than wholesale bulk-material swaps as a pragmatic
path to longevity (Wu et al.,2024).

The persistent challenge is predictive in vitro <>
in vivo correlation (IVIVC). Classical monoculture
assays on static plastic poorly capture opsonization
dynamics, cytokine crosstalk, and tissue mechanics.
Organ-on-chip and organoid systems that integrate
immune trafficking (endothelium — interstitium),
pulsatile flow, and tunable stiffness/strain yield richer
IVIVC for adsorption, macrophage polarization, and

fibrotic signaling (Van Os et al.,2023). For
comparability, reports should specify corona protocols,
flow/shear, ECM composition and stiffness, cyclic
strain, co-culture timing, and, when possible, paired in
vivo readouts (capsule thickness, cell composition,
cytokines) gathered under matched mechanics and
surface chemistry.

Gaps. (i) Validated IVIVC panels that map
chip/organoid outputs to long-term human outcomes
remain scarce; multi-site ring trials bridging standardized
chips, animal models, and explant histology are overdue.
(if) Mechanobiology in design control is under-reported;
submissions should include in situ stiffness, expected
micromotion, and mitigation strategies (compliant
interlayers, soft-hard transitions) that keep cells in pro-
resolving regimes.

6.2. Targeted Delivery & Nanocarriers: Transport in
heterogeneous tissues

“Targeting” fails when transport fails.
Heterogeneous interstitial flow, elevated interstitial fluid
pressure (IFP), abnormal vasculature, and dense
extracellular matrix (ECM) create spatially variable drug
exposure, even for carriers that bind the right receptors.
Tumor and inflamed-tissue mechanics—solid stress,
matrix  crosslinking,  vessel  compression—Iimit
convection and flatten gradients (Stylianopoulos et
al.,2018). Critically, patient-to-patient variability in
microvascular density, IFP, and ECM architecture
dominates outcomes; a carrier that excels in one lesion
can underperform in another despite identical dosing
(Tehrani et al.,2024). Multiscale models that couple
blood flow, vessel leakiness, interstitial transport, and
binding Kinetics, seeded by imaging (DCE-MRI, CT,
ultrasound elastography) and biopsy-derived ECM
metrics, now support patient-specific strategies and are
beginning to show clinical promise (Salavati et al.,2025).

For nanocarriers and depots, spatiotemporal
release must be co-designed with transport. Responsive
chemistries (pH, redox, enzymes, hypoxia) can
synchronize payload release to local cues, but only if
access and residence are adequate. Modeling has
matured from polymer-network diffusion to tissue-scale
convection—diffusion—reaction and organ-scale PBPK
frameworks; paired with uncertainty-aware inference
(Bayesian calibration; discrepancy terms), these tools
identify when to favor rapidly diffusing small molecules,
ECM-penetrating soft nanoparticles, or pre-treatments
(e.g., hyaluronidase, angiotensin-pathway drugs) that
lower IFP and open transport pathways (Yoon et
al.,2020).

What to report for transferability: (i) Tissue
mechanics (IFP, elastic modulus proxies), (ii) vascular
metrics (perfusion, microvessel density), (iii) ECM
descriptors (collagen/HA content and alignment), and
(iv) single-cell exposure where feasible (mass-
spectrometry imaging, single-cell PK). With these,
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investigators can distinguish chemistry-limited from
transport-limited failure and quantify patient variability
rather than treating it as noise.

Gaps. (i) Widely adopted spatiotemporal
release models that couple realistic tissue mechanics and
binding are still rare in preclinical packages; open
datasets with paired imaging and outcomes would
accelerate convergence on credible models. (ii)
Prospective handling of patient variability is uncommon;
adaptive dosing and stratified trials guided by imaging
surrogates of IFP/ECM are natural next steps.

6.3. Point-of-Care Diagnostics: Stability, user
variability, real-world performance

Point-of-care (POC) diagnostics succeed only
when analytical design and deployment realities co-
evolve. Shelf stability hinges on reagent formulation
(lyophilization, excipients), membrane/microfluidic
materials, and temperature/humidity robustness; in the
field, user variability—sample collection, timing,
interpretation—often dominates analytical differences.
The REASSURED framework (Real-time connectivity,
Ease of specimen collection, Affordable, Sensitive,
Specific, User-friendly, Rapid/robust, Equipment-free,
Delivered) reframed success metrics for low-resource
settings (Land et al.,2019). Complementing this, WHO
Target Product Profiles (TPPs) specify minimal/optimal
performance and operational requirements for priority
tests (e.g., TB), providing procurement-grade targets
rather than lab-bench aspirations (World Health
Organization, 2024).

To advance from prototypes to regulatory-grade
validation, follow CLSI methods: EPO5 (precision across
days/operators), EPQO7 (interference—hemolysis,
lipemia, bilirubin, common drugs), EP09 (method
comparison/bias to a reference), and EP17 (limits of
blank/detection/quantitation). Field performance should
then be established with prospective, consecutive-
enrollment studies that capture ambient extremes
(heat/humidity), user training levels, and lot-to-lot
variation. For low-resource deployments, pair clinical
accuracy with operational metrics—failure rates, time-
to-result, connectivity uptime, and total cost per test
(Wang et al.,2021).

User variability deserves dedicated
engineering. Build calibration-free readouts
(ratiometric/internal ~ controls) and error-proofing
(sample  adequacy indicators; lockouts  when
timing/temperature windows are violated). Smartphone
readers can standardize timing, temperature logging, and
interpretation, but must be validated against
lighting/camera differences. For low-resource field
trials, use REASSURED-aligned protocols with
environmental soaks (e.g., 40-45 °C, 75-85% RH),
dust/light exposure, transport vibration, and usability
studies that track error modes and mitigation rates.
Reviews from 2021-2025 emphasize that this

deployment-centric testing often determines public-
health impact more than marginal gains in analytical
sensitivity (Wang et al.,2021).

Gaps. (i) Regulatory-grade validation beyond
emergency use remains rare; many POC papers stop at
accuracy against a lab assay under ideal handling. Full
CLSI panels and TPP-anchored field studies are needed
for credibility and procurement. (ii) Field trials in low-
resource settings that integrate environmental stress, user
diversity, and connectivity are scarce; funders should
require REASSURED/TPP-aligned designs and open
reporting (protocols, de-identified datasets) to enable
meta-analysis.

7. Cross-Cutting Challenges, Policy & Roadmap
7.1. Standards & Reproducibility: Interlab studies;
reference materials

Across all six domains in this review,
reproducibility rises or falls on three pillars: (i) clear
methods and metadata, (ii) traceable measurements, and
(iii) interlaboratory verification. Methods are now
scaffolded by community guidance—PRISMA 2020 for
transparent evidence synthesis (Page et al.2021),
TRIPOD+AI for prediction models (Collins et al.,2024),
and FAIR/FAIR4RS to treat datasets and research
software as first-class, citable research objects with
persistent identifiers, machine-readable metadata, and
explicit licensing (Sansone et al.,2019; Barker et
al.,2022). Traceability requires calibrations and
reference materials; here, certified standards (e.g., NIST
SRMs, European RMs) and ring-test materials for
environmental  chemistry, electrochemistry, and
biomaterials anchor instrument bias and enable
quantified measurement uncertainty to travel with
results. Interlab reproducibility hinges on round-robins
and proficiency testing: photovoltaic stability (ISOS) has
shown how shared stress protocols transform anecdotal
claims into comparable data (Khenkin et al.,2020), and
similar exercises are feasible for membranes/fouling,
PeLED stability, or closed-loop AOP trains.

Minimum cross-domain expectations follow
naturally: preregistered or version-controlled protocols,
RO-Crate or PROV-O provenance that captures
who/what/when for each transformation, and artifact
release (code, data, CAD) under FAIR/FAIR4ARS so
others can re-run—not just re-read—your work (Soiland-
Reyes et al.,2022; Moreau & Groth, 2013). Two cultural
gaps remain: (1) studies still under-report uncertainty
(calibration  curves,  repeatability, intermediate
precision), and (2) “methods” are treated as narrative
rather than auditable process. Our recommendation is
simple: choose the guideline that fits your study
(PRISMA/TRIPOD/ISOS/IEC), pair it with
FAIR+PROV, and insist on at least one interlab
checkpoint before making performance claims.
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7.2. Scale-Up & Reliability: TRL—MRL pathways;
accelerated testing

Promising lab results rarely fail for lack of
cleverness—they fail at interfaces between readiness
levels. Technology Readiness Levels (TRLs) describe
function in relevant environments; Manufacturing
Readiness Levels (MRLs) describe whether you can
make it repeatably and affordably at volume (GAO,
2020). Most academic programs stop at TRL 3-4 and
never gate to MRL-aware plans. A practical bridge is to
define joint exit criteria: every TRL gate must declare the
specific design, metrology, supply chain, and quality
controls required to achieve the corresponding MRL gate
(GAO, 2020).

Reliability evidence must also move from ad
hoc stress to standards-anchored testing with
documented correlations to field behavior. Photovoltaics
rely on IEC 61215-2 (damp heat, thermal cycling, UV);
perovskites add 1SOS bias-light-temperature profiles
(IEC, 2021; Khenkin et al.,2020). Batteries mix calendar
and cycle-life protocols and shipping safety (UN 38.3),
while electronics lean on JEDEC/IEC environmental
sequences. Two rules of thumb generalize: (i) use multi-
axis stress that matches the operational ensemble
(temperature, humidity/water, light, potential/current,
mechanical load, impurities) rather than single-factor
soaks; and (ii) co-report degradation signatures
(impedance growth, defluorination, PCE retention under
MPPT, catalyst ECSA loss, contact resistance drift) with
uncertainty so models can learn mechanistic fingerprints
instead of lumped fade. When accelerated testing is
unavoidable, publish the outdoor/field < accelerated
mapping (activation energies, acceleration factors,
failure modes) so others can reuse—not repeat—your
work (Wheeler et al.,2022).

7.3. Sustainability & Ethics: LCA/TEA integration;
equity in deployment

Performance claims are insufficient without
context. Life-Cycle Assessment (LCA) and Techno-
Economic Analysis (TEA) must appear alongside
efficacy—not as afterthoughts—using 1SO-aligned
practice for goal/scope, system boundaries, inventory,
and impact assessment (ISO 14040/44). That applies
from AOP trains (energy per m3, oxidant grams per md,
carbon cost) to perovskite PV (energy payback, lead
stewardship), batteries (pack cradle-to-grave including
recycling), PeLEDs (encapsulation and rare-metal
footprints), and closed-loop labs (instrument energy,
consumables). On the computing side, Green Al
reframes efficiency (energy, time, hardware) as a
research metric, asking authors to publish resource “price
tags” alongside accuracy (Schwartz et al.,2019;
Schwartz et al.,2020). For materials/chemistry R&D,
Safe-and-Sustainable-by-Design provides a governance
scaffold that blends hazard, exposure, circularity, and
performance from the start (Caldeira et al.,2023).

Equity is part of rigor, not a slogan. Water
technologies should report performance in low-resource
conditions (intermittent power, hot/humid environments)
and price per m3 at realistic volumes; POC diagnostics
should conform to REASSURED and WHO TPPs; Al-
enabled automation must address workforce impacts and
access (Land et al.,2019; World Health Organization,
2024). Ethical deployment demands data governance
(consent, privacy, data sovereignty), community
engagement, and explicit plans for affordability and
serviceability—particularly when a device depends on
consumables, cold chain, or proprietary software.

7.4. Policy & Certification: Bench-to-policy
translation; incentives

Bench-to-policy translation works when
evidence is decision-readable. That means: (i) tests
performed in accredited labs (ISO/IEC 17025) or under
Good Laboratory Practice when appropriate; (ii)
conformity assessment against recognized standards
(e.g., IEC 61215/61730 for PV; CLSI EP series for
diagnostics; NSF/ANSI standards for drinking-water
components; 1SO 13485 for medical-device QMS; EU
Al Act risk-based conformity for high-risk ML); and (iii)
registries where results can be discovered and compared.
Incentives matter: performance-based procurement,
milestone-based grants that tie funding to TRL—MRL
gates, and extended producer responsibility for end-of-
life recovery create pull for reliable, sustainable
products. Finally, regulators and funders can accelerate
uptake by endorsing open testbeds and benchmarks (e.g.,
Matbench; Open Catalyst) and by recognizing
FAIR/FAIR4RS compliance in review criteria (Dunn et
al.,2020; Tran et al.,2023; Barker et al.,2022).
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