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Abstract  Review Article 
 

The world of scientific development turns more and more towards solutions, connected with chemistry, physics, and the 

environmental science. This integrative review comprises evidence synthesis in the areas of nanotechnology and advanced 

materials, wastewater treatment and environmental chemistry, renewable energy and electrochemistry, photonics and sensors, 

artificial intelligence to science, and biomedical engineering. We chart gaps in research by recurring theme: understanding of 

mechanisms at interfaces and defects not yet understood, measuring and benchmarking against interoperable standards, 

scaling-up, manufacturing, and reliability under realistic load, data infrastructure, modeling, and uncertainty quantification, 

design-through-deployment sustainability, safety, and ethics. In each field, bottlenecks of limited characterization of operando 

operation linking nanoscale structure to device-level performance, lack of harmonized metrics that would allow cross-

laboratory comparison, and the lack of validated multiscale models that would allow bridging electronic or molecular 

description with continuum behavior, are the most intractable. The main emerging opportunities in the field of physics-

informed machine learning, closed-loop automated experimentation, and openly shared datasets with a sound metadata and 

provenance. Translators often have limited practice translation capacity due to weak process windows, sustained complex 

matrix permanence, and inadequate exposure, equity, and end-of-life route consideration. The review concludes with the cross-

cutting roadmap, which underlines near-term interlaboratory studies and reference materials, medium term interoperable 

datasets and reliable surrogate models and long-term integrated pilot testbeds which links performance targets and techno-

economic and life-cycle studies. The work will help align researchers, students, and sponsors with high-leverage problems and 

reproducible solutions that grow the scientific understanding and allow to have a sustainable and real-world impact. 

Keywords: Nanotechnology; Wastewater treatment; Renewable energy; Electrochemistry; Photonics and sensors; Artificial 

intelligence; Machine learning; Biomedical engineering; Operando characterization; Uncertainty quantification; 

Reproducibility; Life-cycle assessment; Techno-economic analysis. 
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1. INTRODUCTION & METHODS 
Scientific progress increasingly hinges on 

cross-domain integration: the ability to connect 

mechanistic understanding, comparable measurement, 

robust data/ML practice, reliable scale-up, and 

sustainability/ethics into one coherent workflow. Yet 

between 2018 and 2025, evidence across physical, life, 

and computational sciences shows recurring structural 

gaps that slow discovery and reduce proposal 

credibility—especially for students preparing theses and 

applicants competing for scholarships. This review 

synthesizes that evidence to provide a practical playbook 

for early-career researchers: how to state a mechanism-

driven question, design standards-aligned methods, 

evaluate models under realistic shifts, plan for scale-up 

and reliability, and anticipate the sustainability and 

governance constraints that funders increasingly require 

(Khenkin et al.,2020; Page et al.,2021; Rethlefsen et 

al.,2021; Collins et al.,2024; Barker et al.,2022; Sansone 

et al.,2019; Ovadia et al.,2019; Schwartz et al.,2019, 

2020; Cancela-Outeda et al.,2024; Antunes et al.,2024). 

 

We organize the synthesis around five gap 

types. First are mechanism gaps, where elegant 

hypotheses lack decisive tests or neglect dominant cross-

couplings under realistic operating conditions. A vivid 

case is photovoltaic stability: until the community 

consolidated ISOS-based procedures, mechanisms 

behind efficiency loss were confounded by incomparable 

stressors, uncontrolled ambient conditions, and the 

entanglement of ionic and electronic processes. The 2020 

consensus statement reframed stability as a protocolized, 

reportable construct, turning anecdotal degradation into 

comparable evidence (Khenkin et al.,2020). The lesson 

generalizes: if mechanisms are not probed under 

standardized, documented conditions, cross-lab 

comparisons—and therefore cumulative progress—stall. 

 

Second are measurement/standards gaps, when 

similar questions are pursued with incompatible 

protocols or partial reporting. At the review level, 

PRISMA 2020 modernized evidence reporting 

(eligibility criteria, study flow, risk of bias), while 

PRISMA-S specified how searches must be documented 

(databases, full strings, dates, filters, deduplication), 

enabling independent reproduction of the evidence base 

(Page et al.,2021; Rethlefsen et al.,2021). For prediction 

models, TRIPOD+AI raised the floor on transparency 

across regression and ML, emphasizing data provenance, 

handling of missingness, calibration, and decision-

analytic evaluation (Collins et al.,2024). Together, these 

frameworks convert “methods” from narrative 

description to auditable record—a shift that selection 

panels explicitly reward. 

 

Third are data/ML gaps, including dataset shift, 

leakage, and missing uncertainty quantification. Large 

comparative studies show that both accuracy and 

calibration degrade under corruptions and distribution 

shifts, and ad-hoc fixes often fail; better practices include 

explicit shift testing, uncertainty-aware modeling, and 

clear separation of development and evaluation data 

(Ovadia et al.,2019; Collins et al.,2024). For students, 

this translates into concrete actions: pre-register splits 

where appropriate, report calibration alongside 

accuracy/F1, and document data lineage and 

preprocessing so others can replicate or extend the work. 

 

Fourth are scale-up/reliability gaps, where 

impressive lab-scale results fail in deployment or cannot 

be reproduced. Here, openness and artifact quality matter 

as much as experimental design. Extending FAIR 

principles from data to research software (FAIR4RS) 

treats code, workflows, and containers as first-class 

research outputs—findable, accessible, interoperable, 

and reusable—so that results can be reused and audited 

beyond a single machine or lab (Barker et al.,2022; 

Sansone et al.,2019). Surveys of computational research 

echo the same theme: reproducibility falters without 

environment capture and executable documentation; 

conversely, structured repositories and persistent 

identifiers measurably improve reliability and uptake 

(Antunes et al.,2024). 

 

Fifth are sustainability/ethics gaps, which 

increasingly determine what projects are fundable and 

deployable. The Green AI agenda reframes efficiency—

energy, time, and hardware—as a research dimension on 

par with accuracy, advocating transparent “price tags” 

for compute and efficiency-aware model choices 

(Schwartz et al.,2019, 2020). In parallel, risk-based 

regulation (for example, analyses of the EU AI Act) 

clarifies obligations for high-risk and general-purpose 

AI, making governance plans (dataset stewardship, 

documentation, impact/risk assessments) essential 

components of credible proposals (Cancela-Outeda et 

al.,2024). For students and scholarship applicants, 

integrating these considerations signals operational 

maturity and alignment with funder expectations. 

 

Purpose and scope. Against this backdrop, the 

purpose of this review is to map where cross-domain 

gaps persist (2018–2025) and to translate community 

guidance into actionable steps for student projects and 

scholarship dossiers. The scope is deliberately 

integrative: rather than exhaust domain-specific 

minutiae, we foreground standards, protocols, and 

evaluation practices that generalize across fields and can 

be learned and applied in coursework, theses, and early 

publications (Page et al.,2021; Collins et al.,2024; 

Barker et al.,2022). 

 

Framework. The five-gap scaffold functions as 

a concept map that links explanatory depth (mechanism) 

with comparability (measurement/standards), rigorous 

inference (data/ML), external validity (scale-

up/reliability), and societal constraints 

(sustainability/ethics). Conceptually, this aligns with 

transdisciplinary models of research that cycle through 

co-learning, conceptualization, investigation, 
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implementation, and reflection—ensuring that method 

choices in one box (e.g., ML evaluation) are consistent 

with realities in the others (e.g., field reliability or 

governance) (Pineo et al.,2021). 

 

Evidence synthesis. We followed PRISMA 

2020 for reporting and PRISMA-S for search 

transparency. Databases included Web of Science Core 

Collection, Scopus, PubMed/MEDLINE, IEEE Xplore, 

and ACM Digital Library, supplemented by official 

registries and networks (PRISMA/EQUATOR, 

FAIRsharing). The window was 2018–2025, English 

language, covering peer-reviewed studies, 

consensus/guideline documents, and major community 

frameworks. Search strings combined domain and gap 

constructs; examples include: (“mechanism*” OR 

stability OR degradation) AND (protocol* OR “real-

world” OR field), (“reporting guideline*” OR PRISMA 

OR TRIPOD OR FAIR4RS) AND (standard* OR 

reproducib*), (“dataset shift” OR “uncertainty 

calibration”) AND (benchmark* OR evaluation), (scale-

up OR reliability OR reproducib*) AND (survey OR 

guideline*), and (“Green AI” OR “carbon footprint”) OR 

(“AI Act” AND governance) (Page et al.,2021; 

Rethlefsen et al.,2021). Titles/abstracts were screened 

for relevance to at least one gap type and for 

transferability (methods, standards, evaluations with 

cross-domain utility). Exclusions were pre-2018 items 

unless directly cited within a post-2018 update, non-

scholarly commentary lacking methodological content, 

and duplicates. For each inclusion, we extracted domain, 

study/guideline type, addressed gap(s), key contributions 

(checklists, protocol steps, benchmark findings), and 

adoption signals (citations, community endorsements). 

To mitigate selection bias, we anchored the corpus on 

consensus statements and comprehensive evaluations 

(Khenkin et al.,2020; Page et al.,2021; Rethlefsen et 

al.,2021; Collins et al.,2024; Sansone et al.,2019; Barker 

et al.,2022; Ovadia et al.,2019; Antunes et al.,2024). 

 

 
Figure1: Transdisciplinary Research–Education Framework for Sustainability 

 

The diagram places community at the center, 

linking transdisciplinary research and education. A 

sustainability challenge triggers TD education and joint 

research between schools and out-of-school partners. 

These collaborations build scientific literacy and 

knowledge/competence, fostering responsible 

citizenship. The pathway aims for community well-being 

and sustainable development through socially accepted, 

transformative solutions. 

 

2. Nanotechnology & Advanced Materials 

2.1. Synthesis → Scale-up: From lab routes to 

continuous/green processes 

Bench-top syntheses for nanocrystals, quantum 

dots, and 2D flakes achieve tight control over size, phase, 

and shape, but translation to kilogram-scale often fails 

because batch reactors obscure heat/mass-transfer limits, 

broaden residence-time distributions, and amplify 

impurity carryover. Continuous-flow platforms narrow 

those distributions, stabilize thermal profiles, and enable 

in-line monitoring/feedback—improving dispersity and 

run-to-run reproducibility compared with nominally 

identical batch recipes (Kusada & Kitagawa, 2022). In 

parallel, greener routes—biogenic reductants, lower-

toxicity or bio-based solvents, low-temperature 

processing—reduce solvents and energy without 

sacrificing performance when paired with process 

analytical technology and design-of-experiments blocks 

that map the true process window (El-Seedi et al.,2024). 

Practically, students should (i) parameterize 
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supersaturation/mixing/thermal ramps in small flow 

reactors, (ii) insert analytical checkpoints for residuals 

and unintended phases (e.g., ICP-MS, GC-MS, 

XRD/FTIR), and (iii) quantify lot-to-lot variability with 

replicated runs and statistical power.  

Gaps: process windows; impurity control; 

reproducibility. 

 

2.2.  Interfaces & Ligands: Stability in 

air/water/biofluids 

What sits on the surface governs performance 

and safety. Ligands that stabilize colloids in dry storage 

can desorb or exchange in humid air or aqueous/biofluid 

media, reshaping charge, corona composition, and 

reactivity. Operando probes—ambient-pressure 

XPS/XAS, liquid-cell TEM, bias-dependent 

optical/electrochemical spectroscopies—now track these 

transformations in real time, replacing post-mortem 

narratives with kinetic mechanisms (Wu et al.,2022; 

Bergmann et al.,2019). To make studies comparable, 

MIRIBEL provides minimum reporting for bio–nano 

experiments (size distributions from TEM/DLS; 

crystallinity; concentration units; media/buffer 

chemistry; dosing; zeta potential with pH/ionic strength; 

aging/storage conditions), while FAIR-aligned efforts 

encode such metadata for reuse across labs (Faria et 

al.,2018; Barker et al.,2022; Sansone et al.,2019). Treat 

zeta potential as a required stability readout 

(protocolized prep, triplicates, drift over days–weeks) 

and report explicit aging timelines with repeat 

sizing/charge. 

Gaps: operando characterization; universal reporting 

(size, zeta, aging). 

2.3.  Defect Engineering: Defects → properties → 

device reliability 

Across semiconductors, catalysts, and 

membranes, defects set non-radiative losses, ion 

migration, adsorption sites, and ultimately lifetime. The 

perovskite PV literature offers a template: map 

bulk/surface/interface defects to voltage loss, hysteresis, 

and stability; then passivate or exploit specific states to 

convert materials promise into reliable devices (Wang et 

al.,2024; Khenkin et al.,2020). A credible pipeline 

couples (i) multiscale models—DFT/MD for formation 

energies and barriers feeding drift-diffusion/device 

models under stress—with (ii) defect metrology 

standards—common excitation conditions for PL/TRPL, 

consistent trap-density extraction, and stability protocols 

aligned to realistic operation. 

Gaps: multiscale models; defect metrology standards. 

 

2.4.  Safety-by-Design: Exposure, fate, and risk early 

in design 

Safety and sustainability must be first-class 

objectives, not afterthoughts. The EU Safe-and-

Sustainable-by-Design (SSbD) framework brings health, 

environment, and circularity criteria into materials R&D 

from the outset, while OECD work on nanomaterial test 

guidelines harmonizes characterization, dispersion 

protocols, dose metrics, and reporting so evidence travels 

across sectors (Caldeira et al.,2023; OECD, 2023). 

Predictive nano-QSAR/ML models are improving 

alongside curated datasets, enabling early hazard 

screening and prioritization of wet-lab tests; their 

credibility depends on clear descriptors, documented 

domain of applicability, and external validation under 

realistic exposure matrices (Ammar et al.,2024). In 

student projects, define plausible exposure routes 

(inhalation/dermal/aquatic), preselect harmonized test 

matrices (media, dose/time points), and log uncertainty 

just like any performance metric. 

Gaps: predictive tox models; harmonized test matrices. 

  

  
Figure 2. Defect-to-device pipeline — Defect passivation for perovskite solar cells: from molecule design to device performance 
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Figure 2. Defect-to-device pipeline. Defect 

passivation for perovskite solar cells—from molecule 

design to device performance. The schematic links 

chemical design (Lewis acid/base groups, zwitterions, 

side-chain engineering, frameworks) to targeted defect 

classes, showing how surface/bulk/interface passivation 

suppresses non-radiative recombination and improves 

device metrics (Wu, Li, Qi, Zhang, & Han, 2021). 

 

Table 1: Cross-domain reporting checklist for nanomaterial studies (minimum to ensure comparability) 

Category Report this (minimum) Notes/examples 

Identity & 

composition 

Precursor grades/purity; stoichiometry; phase (XRD/Raman); 

residuals/impurities (ICP-MS/GC-MS) 

Include detection limits; 

note unintended phases 

Size/shape/structure Size distribution (TEM n≥200; DLS hydrodynamic size); 

morphology; crystallinity/defects (HRTEM/SAED; 

TRPL/EPR as relevant) 

Provide raw images and 

analysis scripts 

Surface & charge Ligand identity and binding motif/coverage; zeta potential 

with pH/ionic strength and dispersant 

Standardize sample prep; 

replicate across days 

Environment & aging Storage medium/temperature/light; aging timeline with 

periodic re-measures of size/charge/absorbance 

Record precipitation, 

color/phase drift 

Process conditions Reactor type (batch/flow), temperature/pressure, 

mixing/residence time, atmosphere; yield and mass balance 

For flow, include residence-

time distribution 

Reproducibility Independent repeats (≥3), DoE/controls, lot-to-lot variability; 

statistical treatment 

Share data and notebooks 

(FAIR/FAIR4RS) 

Interactions & 

biointerface 

Protein-corona protocol, media composition, endotoxin test; 

exposure route/scenario 

Align to intended use and 

guideline where possible 

Safety & 

sustainability 

SSbD stage; solvent/energy footprint; waste handling; hazard 

screening (nano-QSAR + confirmatory tests) 

Trace to OECD TGs or 

validated alternatives 

 

3. Wastewater Treatment & Environmental 

Chemistry 

3.1. Micropollutants/PFAS: Degradation pathways & 

by-products 

Micropollutants—including pharmaceuticals, 

personal-care products, pesticides, endocrine disruptors, 

and industrial additives—persist in waters at ng L⁻¹–µg 

L⁻¹ and frequently evade conventional treatment. Among 

these, per- and polyfluoroalkyl substances (PFAS) are 

outliers in persistence because the C–F bond (≈485 kJ 

mol⁻¹) resists electrophilic attack and most PFAS have 

surfactant-like mobility that frustrates capture. Modern 

destruction strategies therefore bifurcate into oxidative 

routes (•OH, SO₄•⁻, reactive halogen species, photolysis) 

and reductive routes (hydrated electrons e⁻aq, strongly 

reducing cathodes/plasmas), with distinct intermediates 

and by-products. Advanced oxidation processes (AOPs) 

such as UV/H₂O₂, UV/persulfate, and ozone-based 

systems work well for many aromatic micropollutants by 

initiating hydroxylation, ring-opening, and carbonyl 

formation; however, for fully perfluorinated moieties 

these same conditions are inefficient and can even reveal 

hidden PFAS loads by converting precursors into 

terminal perfluoroalkyl acids (PFAAs). High-dose AOP 

studies report measurable increases in short-chain 

PFAAs (e.g., PFBA, PFPeA) despite apparent “removal” 

of unidentified PFAS, underscoring the need for fluorine 

mass balances rather than single-analyte removal (Ersan 

et al.,2024). For non-PFAS micropollutants, the same 

oxidation steps typically produce more polar fragments 

that a downstream bio-polishing step can mineralize; 

thus, for complex wastewaters, AOPs are most effective 

when they create biodegradability rather than attempting 

full mineralization in one unit. 

 

The most compelling PFAS breakthroughs have 

come from reductive chemistry. Hydrated-electron 

systems (e.g., UV/sulfite) attack the α-C–F bond of 

perfluoroacyl groups, triggering stepwise defluorination 

and decarboxylation; carefully staged sequences achieve 

substantial fluoride release and measurable carbon 

mineralization in realistic matrices (Ren et al.,2021). A 

milestone demonstration showed low-temperature 

mineralization of perfluorocarboxylic acids by base-

mediated activation in polar aprotic media, initiating 

cascades that ultimately yield fluoride and benign 

fragments—proof that PFAS defluorination can be 

chemically engineered without resorting to near-thermal-

plasma extremes (Trang et al.,2022). Electrochemical 

routes now combine anodic oxidation (e.g., boron-doped 

diamond) for precursor destruction with cathodic or 

paired-cell reduction to accelerate defluorination; 

comprehensive surveys from 2018–2025 detail 

anode/cathode materials, cell hydraulics, faradaic 

efficiency, and durability constraints that still define 

scale-up feasibility (Xu et al.,2024). 

 

Because by-products determine health risk and 

process credibility, monitoring must extend beyond the 

parent compound. For aromatic micropollutants, report 

aldehydes, carboxylates, and short diacids generated 

during partial oxidation, and couple these to 

biodegradability surrogates (BOD/COD, biodegradable 

DOC) to justify sequencing with biological steps. For 

PFAS, track short-chain and ultrashort species (e.g., 

trifluoroacetic acid) and close the fluorine balance via 

extractable organofluorine (EOF), total organofluorine, 

and inorganic F⁻ so that mass is conserved even when 

transformation pathways split (Aro et al.,2022; Jiao et 

al.,2023; Ruyle et al.,2023). Nontarget high-resolution 
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MS adds an early-warning layer for unexpected 

transformation products and should be planned as a 

periodic check rather than an ad-hoc last step (Bugsel & 

von der Kammer, 2023). 

 

Gaps—kinetics in real matrices; toxicity of 

intermediates. Rate constants measured in ultrapure 

water typically overpredict removal in natural waters. 

Natural organic matter (NOM), alkalinity 

(HCO₃⁻/CO₃²⁻), and halides (Cl⁻/Br⁻) scavenge radicals 

or re-route chemistry into less reactive 

carbonate/halogen radicals; turbidity and chromophores 

suppress UV fluence; metals and hardness create side 

reactions that impose hidden oxidant demand. Matrix-

aware studies link these effects to energy demand (EE/O, 

kWh m⁻³) and to by-product formation that can negate 

benefits (Li et al.,2022; Hübner et al.,2024). To convert 

this into practice, propose standard matrix panels—

DOC/UV254 tiers, alkalinity tiers, halide tiers, and 

hardness tiers—and co-report intermediate toxicity using 

effect-based bioassays (e.g., oxidative stress, 

mutagenicity) so that “parent removal” does not mask 

risk transfer. In short, destruction chemistry is viable, but 

deployability hinges on kinetics and toxicology in the 

water you will actually treat. 

 

3.2. Hybrid Trains (AOP + Bio + Adsorption + 

Membranes): Design rules & control 

No single unit process is universally optimal for 

micropollutant control; hybrid trains that exploit 

complementary mechanisms routinely deliver higher 

resilience and lower life-cycle costs. The core principle 

is simple: use cheap, bulk steps to reduce UV shielding 

and oxidant/quenching demand; deploy AOPs to cut 

molecular “knots” that biology cannot; hand partially 

oxidized fragments to biological units for mineralization; 

polish with adsorption or membranes; and, for PFAS, 

pre-concentrate and destroy in small volumes rather than 

pushing raw flows through energy-intensive destructive 

units. In potable reuse, the canonical sequence—

coagulation/filtration or biofiltration → UV-AOP (H₂O₂ 
or chlorine) → biological filtration or GAC—arose 

because DOC and UV-absorbing chromophores choke 

radical yield; reducing DOC upstream reduces EE/O and 

by-product risk downstream (Hübner et al.,2024). For 

halogenated precursors, it can be advantageous to place 

biological steps before oxidative units to limit 

halogenated by-products. For PFAS, adsorptive pre-

concentration with GAC or ion-exchange followed by 

destruction in brines/RO concentrates (via 

electrochemical oxidation or advanced reduction) 

reliably lowers energy per m³ treated while avoiding co-

contaminant parasitics (Xu et al.,2024). 

 

Sequence optimization hinges on (i) matrix-

aware placement, (ii) controllability, and (iii) 

benchmarkability. UV/chlorine AOP (UV/Cl) illustrates 

all three. Radical speciation (Cl•, Cl₂•⁻, •OH) and 

quantum yields depend strongly on ammonia/chloramine 

chemistry, pH, and optical path; utilities that manage 

ammonia upstream or maintain chloramine steady state 

see more stable UV/Cl performance. A recent reuse-

focused synthesis laid out implementer guidance (lamp 

selection, chlorine feed, ammonia management, by-

product surveillance), emphasizing that UV/Cl is a train 

technology whose success depends on matrix 

conditioning and downstream biofiltration to scavenge 

oxidized fragments (Mackey, Hofmann, & Andrews, 

2023; Chen, Mackey, & Andrews, 2024). 

 

Design rules for control flow from a few 

measurable surrogates. Use UV254 and fluorescence 

EEMs to track aromaticity and adjust dose to a target 

EE/O; maintain oxidant residuals and monitor 

peroxydisulfate decay (if used) to infer radical 

availability; and couple finished-water analytics (target 

LC-MS/MS + periodic high-resolution nontarget) to 

confirm that “removal” does not merely reshuffle risk. 

For PFAS side loops, meter defluorination via F⁻ and 

report total/extractable organofluorine to capture 

transformation to ultrashort products. Control logic can 

be automated: if UVT drops below setpoints, divert to 

GAC or increase fluence; if oxidant residuals overshoot, 

trim dose; if brine PFAS exceeds a breakpoint, activate a 

destruction loop on regenerant streams. Photocatalytic 

membranes, ozonation-MBR synergies, and catalytic 

GAC show promise as reactive polishes, but gains shrink 

without real-time monitoring of membrane resistance 

growth and adsorber breakthrough. 

 

Benchmarks—energy/chemicals per m³. Report 

(i) EE/O for photochemical steps and kWh m⁻³ for 

electrochemical/plasma steps; (ii) oxidant dose (g m⁻³); 
(iii) carbon cost (kg CO₂e m⁻³) from electricity and 

chemicals; and (iv) finished-water outcomes: parent + 

sentinel transformation products (TPs), toxicity 

endpoints, and for PFAS, % defluorination and EOF. The 

IUPAC EE/O standard (Keen, Bolton, & Litter, 2018) 

remains the common currency for cross-reactor 

comparisons and should be cited with lamp type, path 

length, UVT, and reactor hydraulics. 

 

Gaps—sequence optimization; 

energy/chemicals benchmarks. Most studies optimize 

within a unit process; few optimize the whole train 

against cost, energy, and carbon. Reported EE/O and 

kWh m⁻³ values often lack context (UVT, DOC, 

alkalinity, halides), making cross-study comparisons 

unfair. The field needs multi-site trials where identical 

trains are evaluated across standardized matrix panels, 

with co-reported EE/O, kWh m⁻³, oxidant stoichiometry, 

and toxicity outcomes. Without that, utilities will 

continue to “locally” optimize and miss system-level 

minima. 

 

3.3. Membranes & Fouling: Materials, pretreatment, 

cleaning cycles 

Pressure-driven membranes (MF/UF/NF/RO) 

are the backbone of advanced trains because they offer 

deterministic separation and permit compact, modular 
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design. Their Achilles’ heel is fouling—a multi-

mechanism phenomenon encompassing particulate/cake 

buildup, organic adsorption and pore blocking, inorganic 

scaling, and biofouling. Since 2018, material advances 

have targeted the first minutes of foulant–surface 

encounter (surface chemistry, charge, roughness) and the 

long tail of deposit maturation (hydrodynamics, 

pretreatment, cleaning). Zwitterionic and PEG-like 

coatings, nanocomposite skins (e.g., TiO₂, graphene 

oxide), and tailored polyamide chemistries can lower 

adhesion energies and water contact angles, delaying the 

onset of irreversible fouling. Ceramics offer higher 

chemical/thermal tolerance, enabling aggressive clean-

in-place cycles. Yet field experience shows that 

operating conditions and pretreatment matter as much as 

surface science: inline coagulation, biofiltration, or 

powdered carbon upstream can transform a fragile 

system into a stable one by reducing foulant loading and 

shifting foulant character (Hübner et al.,2024). 

 

Cleaning must match foulant type and 

membrane chemistry. For RO/NF, alkaline cleans target 

organic/biofouling; acid cleans remove carbonate/silica 

scalants; oxidants are potent but often incompatible with 

polyamide unless carefully controlled; ceramics tolerate 

harsher oxidants/temperatures. Good practice is to 

maintain normalized specific flux and salt passage within 

alarm bands and to blend scheduled cleans with 

condition-based triggers (ΔP, flux-decline rate). Plants 

increasingly deploy soft sensors and AI/ML predictors 

trained on SCADA telemetry (flow, pressure, 

conductivity, temperature, UV254) to forecast fouling 

and recommend setpoint changes (crossflow, flux, 

backwash/relax frequencies), but a common failing is 

non-transferability across sites due to unshared datasets 

and inconsistent influent reporting (Processes special 

issue reviews, 2024). When AOPs precede membranes, 

upstream radical chemistry can either help 

(depolymerize macromolecules) or hurt (create sticky 

fragments); sequence-specific pilot testing remains 

essential before lock-in. 

 

Gaps—anti-fouling predictors; long-term field 

data. The literature is rich in lab-scale anti-fouling claims 

but thin on multi-year, multi-site demonstrations. 

Progress requires three things: (i) standardized challenge 

panels that vary NOM (DOC/SUVA), divalent cations 

(Ca²⁺/Mg²⁺), silica, particulates, and biogrowth potential 

to fairly rank membranes/coatings; (ii) open telemetry 

corpora to benchmark ML predictors with agreed 

inputs/targets (e.g., days-ahead TMP rise); and (iii) 

harmonized cleaning taxonomies (chemistry, dose, 

contact time, recovery) tied to material compatibility and 

life-cycle impacts. Absent these, “anti-fouling” remains 

a lab-specific label rather than a guarantee of stable 

energy per m³ over years. 

 

3.4. Real-World Variability: NOM/ions/co-

contaminants 

Whether a promising bench recipe becomes a 

reliable plant process is decided by the matrix: natural 

organic matter (NOM), alkalinity, halides, hardness, 

metals, particulates, and co-contaminants such as 

ammonia or nitrite. Between 2018 and 2025, a consistent 

picture emerged. NOM competes for photons, scavenges 

radicals, and forms coronas on adsorbents and 

membranes; alkalinity shifts radical equilibria, forming 

carbonate radicals (CO₃•⁻) with different selectivity; 

halides (Cl⁻/Br⁻) steer photo-halogen chemistry toward 

reactive halogen species or brominated organics; 

hardness/silica drives scaling; and co-contaminants 

rewire oxidant demand and by-product spectra. Multi-

matrix AOP studies show order-of-magnitude swings in 

apparent kinetics and EE/O across matrices that would 

be indistinguishable by target load alone (Li et al.,2022). 

UV/Cl specifically is matrix-sensitive: chloramine 

photolysis pathways, ammonia/chloramine equilibria, 

and pH all modulate radical speciation and therefore 

energy demand and by-product risk; guidance for potable 

reuse now treats ammonia management as a prerequisite 

to stable UV/Cl operation (Mackey et al.,2023; Chen et 

al.,2024). Persulfate-based AOPs show a dual role for 

NOM: at low concentrations, NOM can mediate electron 

transfer or act as a photosensitizer; at typical watersheds’ 

DOC, NOM is an efficient radical scavenger (Luo et 

al.,2024). Carbonate species can either buffer pH and 

stabilize reactive oxygen species or divert •OH to less 

reactive CO₃•⁻, depending on contaminant functionality 

and dose (Rayaroth et al.,2023). 

 

To make results transferable, embed Standard 

Influent Panels into methods: at minimum, DOC/UV254 

tiers (e.g., 1/3/6/10 mg L⁻¹ with SUVA bands), alkalinity 

tiers (e.g., 50/150/300 mg L⁻¹ as CaCO₃), halide tiers 

(Cl⁻ 0–250 mg L⁻¹; Br⁻ 0–0.5 mg L⁻¹), and hardness tiers 

(Ca²⁺/Mg²⁺ 50–300 mg L⁻¹). For UV-based steps, report 

path length and UVT at the operating wavelength 

(including 222 nm if far-UVC is used). Couple 

performance to finished-water outcomes: parent + 

sentinel TPs, effect-based bioassays for oxidative stress 

and mutagenicity, and for PFAS, defluorination and 

organofluorine balances. Finally, replicate a subset of 

tests with reference NOMs (e.g., IHSS standards) so that 

other labs can reproduce your “matrix corners.” Treating 

the matrix as a design variable rather than a nuisance is 

what enables generalizable design rules. 
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Figure 3: Process-train decision tree (reference trains for potable reuse). 

 

Representative treatment trains used in direct 

potable reuse programs—e.g., (1) MF→RO→AOP and 

(2) O₃→BAF→MF/UF→RO→AOP—provide a 

backbone for decision-tree sequencing across AOP, bio, 

adsorption, and membranes. Use this as the template for 

branch choices driven by matrix tiers (UVT/DOC, 

alkalinity, halides, hardness), target classes (aromatic vs. 

PFAS), and energy/chemical benchmarks. 

 

4. Renewable Energy & Electrochemistry 

4.1. Batteries (Liquid & Solid): SEI/CEI chemistry; 

chemomechanics 

Electrochemical performance and safety in both 

liquid-electrolyte Li-ion/Li-metal cells and solid-state 

batteries are governed by the structure, chemistry, and 

mechanics of interphases at anode (SEI) and cathode 

(CEI). From 2018–2025, three converging insights shape 

today’s design rules. First, solvation and reduction 

pathways in the primary electrolyte determine SEI 

composition and morphology; high-donor, fluorinated, 

and localized-high-concentration electrolytes (LHCEs) 

bias reduction toward inorganic-rich, mechanically 

robust SEIs that suppress parasitic reactions and improve 

Coulombic efficiency. Second, cathode–electrolyte 

interphases form from oxidative electrolyte 

decomposition and salt anion participation, particularly 

at high-Ni layered oxides and high upper-cutoff voltages; 

CEI chemistry (e.g., M–F, oxyfluorides, sulfonates) 

governs impedance growth, oxygen release, and 

transition-metal dissolution. Third, chemomechanics—

volume change, stress generation, fracture of active 

particles and interphases—co-drives aging, linking 

reaction heterogeneity to crack networks that expose 

fresh surfaces and accelerate SEI/CEI growth. 

 

For solid-state batteries (SSBs), Li penetration 

is now recognized as a mechanics-and-defects problem 

coupled to electrochemistry. Above a critical current 

density (CCD), Li can thread along grain boundaries, 

pores, or mechanically weak interphases, even in “stiff” 

ceramics; local stress concentrators, electronic leakage, 

and void formation during stripping create conditions for 

filament nucleation. Practical stability therefore depends 

on (i) interphase engineering (lithiophilic interlayers; 

halide/oxide buffers; reactive wetting to reduce voids), 

(ii) microstructure control (dense electrolytes with low 

porosity and benign grain-boundary chemistry), and (iii) 

stack pressure and temperature that keep contact stable 

without crushing brittle ceramics. In liquid cells, 

analogous principles apply at softer length scales: SEI 

elasticity and yielding modulate how Li plates/strips and 

whether dendritic features are blunted or sharpened by 

the interphase. 

 

Testing gaps remain. Despite progress, we lack 

standardized dendrite-onset descriptors that transfer 

across chemistries and formats. CCD is helpful but test-

condition-sensitive (electrolyte thickness, temperature, 

pressure, areal capacity, pulse shape). Imaging-backed 

descriptors that report effective current density at 

constrictions, interphase fracture energy, and void 

evolution would translate better to pack-level risk. 

Likewise, calendar vs. cycle aging is frequently 

conflated. Calendar aging (open-circuit or low-rate 

storage at set SOC/temperature) follows Arrhenius-type 

kinetics dominated by SEI/CEI growth and transition-

metal dissolution; cycle aging superposes mechanical 

stressors (lithiation-induced strain, shoulder reactions at 

high cutoff) and electrochemical stressors 

(plating/stripping, oxygen redox). Harmonized protocols 
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should therefore separate these modes (fixed SOC 

ladders and temperatures for calendar; controlled depth-

of-discharge, C-rate, and rest profiles for cycling) and 

report both with identical analytics (e.g., incremental 

capacity/voltage analysis, gas evolution, impedance 

spectroscopy) so models can disentangle mechanisms 

instead of fitting lumped fade. 

 

4.2. Electrolyzers & Fuel Cells: Catalysts–membrane 

compatibility 

Durability in PEM and AEM water 

electrolyzers and PEM/alkaline fuel cells hinges on 

chemical/thermal compatibility between catalysts, 

ionomers, and membranes under realistic load cycles. In 

PEM electrolyzers, OER catalysts (IrO₂, doped oxides) 

must resist transient high potentials, oxygen-rich 

environments, and acidic attack; 

dissolution/redistribution roughen catalyst layers and 

thin electronic pathways. At the same time, 

perfluorosulfonic acid (PFSA) ionomers and membranes 

face radical-driven scission (•OH, •OOH) and 

dehydration–rehydration cycles that embrittle 

backbones. Catalyst layers must therefore be co-

designed with ionomer chemistry (side-chain length, 

acid capacity, radical scavengers) and pore architecture 

to sustain triple-phase boundaries without starving 

reactants or trapping O₂. In AEM electrolyzers, the 

durability bottleneck shifts to alkaline stability of 

cationic headgroups (e.g., quaternary ammonium β-

elimination), carbonate management, and transition-

metal dissolution/precipitation; matching catalyst 

supports and membranes (e.g., corrosion-resistant 

Ni/Fe/Co phases with stable poly(aryl piperidinium) or 

spirocyclic AEMs) is central to lifetime. 

 

For PEM fuel cells, start–stop and load-cycling 

drive Pt and Pt-alloy dissolution, Ostwald ripening, and 

carbon support corrosion, while ionomer/membrane 

thinning accelerates peroxide/radical formation and 

pinhole growth. Impurity tolerance—NH₃, H₂S, SO₂, 
Cl⁻, trace metals—remains a practical constraint; even 

ppb–ppm levels can poison active sites or shift reaction 

selectivity, so pre-treatment, filters, and operating 

windows (humidity/temperature) must be codified 

alongside catalyst choices. Emerging ultra-low-Ir PEM 

electrolyzers and PGM-free fuel-cell cathodes amplify 

compatibility stakes: supports, binders, and membranes 

must share electrochemical stability windows, gas/water 

transport characteristics, and interfacial adhesion across 

thermal and hydration cycles. 

 

Gaps: (i) Durability under realistic load cycles 

(start-stop, ramping, dynamic electrolyzer operation with 

curtailed renewables) still lags steady-state tests; 

protocols need drive-cycle profiles (potential, current, 

RH, temperature) and synchronized analytics 

(dissolution via ICP-MS, EIS impedance mapping, 

tomography). (ii) Impurity tolerance libraries are 

incomplete; systematic challenge matrices (ammonia, 

sulfides, chlorides, silica, and transition metals at 

technology-relevant ppb–ppm) tied to recoverability 

(air/voltage hold, potential cycling) would convert one-

off poisoning studies into engineering rules. (iii) 

Membrane–catalyst co-aging is under-reported; shared 

tests that capture mutual degradation (radicals from one 

layer attacking the other) will prevent incompatible 

pairings from entering pilots. 

 

4.3. PV & PEC Stability: Light/heat/humidity/bias 

synergy 

Device stability in photovoltaics (PV) and 

photoelectrochemical (PEC) systems emerges from the 

coupled action of light intensity/spectrum, temperature, 

humidity/water, and electrochemical bias. In perovskite 

PV, ion migration, interfacial reactions, and phase 

segregation are accelerated by electric fields and thermal 

stress; in Si and thin-film PV, metallization corrosion, 

encapsulant browning, and potential-induced 

degradation (PID) dominate. PEC devices layer 

additional stressors: electrocatalyst corrosion, gas-

bubble management, and electrolyte reactivity at 

photoelectrode surfaces. The 2018–2025 period 

delivered two standardization thrusts. First, consensus 

protocols for perovskite stability (ISOS) formalized 

illumination, temperature, humidity, and maximum-

power-point tracking (MPPT) testing so results are 

comparable beyond single-lab anecdotes. Second, PV 

standards (e.g., IEC 61215-2) tightened damp-heat, 

thermal-cycling, and UV exposure criteria, while PEC 

best-practice papers stressed reporting of stability 

metrics (e.g., time to 80% of initial photocurrent at 1-sun, 

electrolyte composition, pH, bias, and gas analysis). 

 

The central message is synergy: stressing one 

axis at a time misleads. Elevated temperature often 

stabilizes perovskite ion transport (reducing hysteresis) 

yet accelerates decomposition and metallization 

diffusion; humidity may passivate certain surfaces at low 

levels but drives hydrolysis at high RH; bias stabilizes 

MPPT performance in some architectures yet triggers 

interfacial reactions elsewhere. Therefore, stability plans 

should reflect operational ensembles (e.g., outdoor 

diurnal cycling with irradiance/temperature/humidity 

histograms), not single-point soaks. A credible outdoor 

↔ accelerated correlation requires matched spectra 

(AM1.5G or measured site spectra), temperature cycling, 

and encapsulation realism (glass/barrier choices, edge 

seals). For PEC, stability must couple photocurrent 

retention with Faradaic efficiency and gas crossover; 

catalysts and protective layers must be compatible with 

both electrolyte and illumination. 

 

Gaps: (i) Cross-lab stability metrics remain 

heterogeneous. Report PCE retention curves under 

MPPT with identical binning (e.g., T, RH, irradiance), 

plus activation/conditioning histories; harmonize failure 

definitions (T₈₀, slope to knee point). (ii) Outdoor vs 

accelerated correlations are under-documented: many 

accelerated tests fail to replicate moisture/oxygen ingress 

pathways or realistic UV/thermal cycles; structured 
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round-robin campaigns with identical samples across 

climates are needed. (iii) Bias-coupled stress (e.g., PEC 

under load, PV under reverse bias hot-spots) lacks 

standard recipes; include bias windows, duty cycles, and 

current set-points in every stability report. 
 

4.4. Thermal Management & Efficiency: Interfaces, 

thermoelectrics 

Across battery packs, power electronics, 

electrolyzers, fuel cells, and PV/PEC balance-of-system, 

thermal bottlenecks often set reliability and efficiency. 

Two fronts dominate: thermal interfaces and phonon 

engineering in disordered solids/complex alloys. On 

interfaces, performance is governed by contact 

resistance—a convolution of bulk TIM conductivity, 

bond-line thickness, wetting, roughness, and clamping 

pressure. Since 2018, high-conductivity fillers 

(graphene/graphite, hexagonal BN, metal nanowires) in 

compliant matrices have pushed through-plane 

conductivities upward while maintaining low modulus to 

conform to roughness; sintered metal TIMs and phase-

change TIMs reduce bond-line thickness further. Yet 

metrology variance obscures fair comparison. Re-

adoption of ASTM D5470 (reapproved within 2018–

2025) and guarded-hot-plate variants—together with 

reporting of pressure–thickness–temperature maps—is 

restoring comparability. For field reliability, the key is 

aging under compression/thermal cycling (pump-out, 

dry-out, binder oxidation) and electrical properties 

(leakage, dielectric strength) for packs and inverters; 

reporting should couple thermal figures to 

creep/relaxation and dielectric metrics. 

 

 

 
Figure 4: Degradation/failure tree across electrochemical energy devices 

 

In phonon engineering, the focus has shifted 

from perfect crystals to disordered crystals, complex 

alloys, and amorphous networks where heat is carried by 

a mix of propagons (wave-like phonons), diffusons 

(diffusive vibrations), and locons (localized modes). 

2018–2025 work leveraged alloy disorder, hierarchical 
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nanostructuring, and rattler modes to depress lattice 

thermal conductivity without catastrophically scattering 

charge carriers—central for thermoelectrics. In parallel, 

amorphous and hybrid materials for encapsulation and 

membranes benefit from vibrational-mode engineering 

that lowers κ while preserving mechanical robustness 

and barrier properties. For systems engineering, the 

themes rhyme: (i) pursue low-κ where heat needs to be 

trapped (thermoelectric legs, thermal barriers), (ii) 

pursue ultra-low contact resistance where heat must be 

extracted (stacks, modules), and (iii) measure both with 

traceable, standardized methods. 

 

Gaps: (i) Contact-resistance standards must be 

enforced in publications: specify test fixtures, clamping 

pressure, surface finishes, bond-line thickness, 

temperature, and aging, all per a recognized standard 

(e.g., ASTM D5470-17(2022)). (ii) Phonon engineering 

in disordered solids needs shared datasets linking 

structure (pair distribution functions, vibrational 

densities of states) to κ and mechanical/dielectric 

properties, enabling inverse design. (iii) System-level 

metrics—°C/W at interface + module thermal budget + 

control policy—should accompany material data so 

thermal upgrades translate to installed efficiency and 

lifetime. 

 

Tree-style breakdown of operating stressors 

propagating to component-level mechanisms and 

observable performance loss. Branches illustrate how 

chemical/thermal/electrical stress drives interfacial 

reactions (e.g., ionomer or membrane attack, catalyst 

dissolution/redistribution), transport losses (gas/mass 

transport limits, contact resistance), and mechanical 

failure (cracks, agglomeration), culminating in 

symptoms such as impedance rise, voltage decay, and 

efficiency loss. Although drawn for a PEM fuel cell, this 

hierarchy maps directly to batteries (SEI/CEI growth, Li 

penetration, contact aging), electrolyzers 

(membrane/ionomer scission, catalyst shedding), and 

PV/PEC devices (encapsulant/catalyst degradation, 

series-R growth). Source (APA, no link): Foniok, K., et 

al., (2025). 

 

5. Photonics, Sensors & Optoelectronics 

5.1. Perovskite LEDs/Detectors: Ion migration, 

blue/UV stability 

Metal–halide perovskites have transformed 

visible-light emitters and detectors, but device ceilings 

are still set by ionic motion and interfacial reactivity 

under coupled bias–light–heat stress. In LEDs, halide-

vacancy hopping and mobile A-site ions (MA⁺/FA⁺/Cs⁺) 
distort the internal field, induce spectral drift, and 

catalyze interfacial decomposition of transport layers; 

the effect intensifies for blue/near-UV devices because 

higher photon energy, Cl/Br-rich alloys, and quasi-2D 

phase distributions amplify non-radiative pathways and 

phase segregation (Li et al.,2022; Zhao et al.,2024). 

Stabilizing the electric double layer using robust 2D/3D 

heterostructures, halide-binding ligands, and low-

polarity, oxidation-resistant transport layers extends T₅₀, 
yet deep-blue PeLEDs still exhibit luminance-dependent 

drift (Li et al.,2022; Zhao et al.,2024). 

 

Perovskite photodetectors show parallel 

physics: high-field operation promotes ion migration, 

dark-current growth, and interfacial redox, whereas 

photovoltaic/zero-bias architectures using thick single 

crystals or 2D perovskites suppress ion-migration-driven 

instabilities and reduce noise, enabling long-term 

imaging (Sakhatskyi et al.,2023; Liu et al.,2024). 

 

Gaps—operando bias-light maps; 

encapsulation chemistries. The field would benefit from 

standardized operando maps that sweep bias, photon 

flux/spectrum, temperature, and humidity while tracking 

EL/PL spectra, EQE, dark current, and impedance to 

decouple ionic from electronic dynamics (Li et al.,2022). 

Encapsulation remains chemistry-limited: barriers must 

block H₂O/O₂ and acidic volatiles while remaining ion-

inert under blue/UV; UV-hard silicones/urethanes, 

stack-compatible getters, and low-ionic-content 

adhesives are promising but under-reported for PeLEDs 

and detectors (Zhao et al.,2024). 

 

5.2. Silicon Photonics & Packaging: Co-packaged 

optics, reliability 

At 51.2–102.4 Tb/s switch generations, co-

packaged optics (CPO) reduces electrical I/O loss and 

energy/bit by co-locating photonics with the ASIC, 

shifting reliability to a multi-material stack (PICs, III–V 

gain, micro-bumps, underfills/adhesives, LTCC/organic 

interposers, TIMs, fiber attach). Primary risks mirror 

advanced electronics packaging: CTE mismatch 

concentrates strain at underfill and bump interfaces; 

underfill chemistry and cure history govern moisture 

uptake, modulus growth, and adhesion; and adhesive 

bonds at fiber, microlens, and lid joints age via thermo-

oxidation, plasticization, and moisture-assisted 

hydrolysis (Bender et al.,2024; Gao et al.,2025). Device-

level constraints compound these risks—laser 

temperature windows, adhesive wicking near facets, and 

3D-package warpage that perturbs fiber–waveguide 

alignment—so cooling design (liquid cold plates; high-κ 

TIMs) must be co-optimized with alignment stability and 

material selection (Herrick, 2025; Gao et al.,2025). 

 

Gaps—high-heat-flux materials; bond/adhesive 

aging. Local heat fluxes near 1 kW cm⁻² demand TIMs 

combining sub-100-µm bond-lines, high through-plane 

κ, dielectric strength, and creep resistance—traits rarely 

co-optimized in optical-grade materials (Gao et al.,2025; 

Wu et al.,2025). Long-horizon aging datasets for 

epoxies/silicones/hybrids under combined temperature–

humidity–optical flux are sparse, and “photonic 

contamination” (outgassing, refractive-index drift, 

fluorescence) lacks shared test recipes (Plachý et 

al.,2025; Bender et al.,2024). 
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5.3.  Sensors (Electrochemical/Optical/Bio): 

Selectivity & drift 

Selectivity and drift are the twin constraints for 

long-lived chemical and biosensors in real matrices 

(biofluids, food, wastewater, air). Electrochemical 

sensors encounter non-specific adsorption, redox 

interferents, and biofouling; optical sensors contend with 

background fluorescence, scattering, and 

photobleaching. Two design philosophies have matured. 

First, antifouling interfaces—zwitterionic brushes, 

peptide/saccharide coatings, slippery composites, 

hydrogels—sustain sensitivity by resisting protein and 

cell adhesion without blocking transport (Kourti et 

al.,2024). Second, calibration-free/self-calibrating 

readouts convert environmental fluctuation into 

common-mode noise: ratiometric signals, dual-

frequency or kinetic interrogation of electron-transfer 

rates, and internal standards reduce apparent drift (Yang 

et al.,2018; Abeykoon et al.,2024). ML-assisted filtering 

and transfer learning now track drift, compensate matrix 

shifts, and output uncertainty bands, pushing sensors 

from one-off demos to deployable networks with 

declared error bars (Zhao et al.,2025; Yan et al.,2024). 

 

Gaps—antifouling surfaces; calibration-free 

methods & UQ. Field-ready antifouling requires 

standardized fouling challenges (protein panels, whole 

blood/serum, wastewater fractions) and long-horizon 

soaks with cyclic temperature and flow; many coatings 

succeed in single-protein assays but fail against mixed 

biofilms (Kourti et al.,2024). For calibration-free 

sensing, pair ratiometric/kinetic readouts with formal 

uncertainty quantification—e.g., hierarchical Bayesian 

models or bootstrap confidence intervals that ingest raw 

voltammograms or spectra, propagate drift-

compensation steps, and report credible intervals rather 

than point estimates (Abeykoon et al.,2024; Zhao et 

al.,2025). 

 

 
Figure 5. Packaging stack reliability map (co-packaged optics cross-section as a reliability template) 

 

Cross-sectional schematics of hybrid optical 

packages on fan-out wafer-level platforms illustrate the 

stacked materials and interfaces—PIC, driver/TIA, 

LTCC/organic substrates, micro-bumps, 

underfill/adhesives, and optical attach—where 

thermomechanical, moisture, and chemical stress 

concentrate. Use this anatomy to map failure risks (CTE 

mismatch, bond-line aging, delamination, and 

fiber/connector creep) and to place sensors/controls for 

prognostics. 

 

AI FOR SCIENCE & DATA INFRASTRUCTURE 

PHYSICS-INFORMED ML: 

CONSERVATION/CAUSALITY CONSTRAINTS 

Physics-informed machine learning (PIML) 

blends mechanistic priors with statistical learning so 

models respect what we already know about nature while 

still fitting complex data. The most common route 

imposes soft constraints by adding PDE residuals, 

boundary/initial conditions, or conservation penalties to 

the loss; this is the logic behind physics-informed neural 

networks (PINNs) and many of their successors. Because 

the residual term couples predictions to differential 

operators, the network “pays” for violating mass, 

momentum, charge, or energy budgets, making it a better 

citizen under sparse supervision and enabling inverse 

problems (parameter identification, hidden forcing) as 

naturally as forward simulation (Raissi, Perdikaris, & 

Karniadakis, 2019; Karniadakis et al.,2021; Wu, Yu, & 

Huang, 2024). A complementary route uses hard 

constraints: architectures that are born conservative—

Hamiltonian/Lagrangian networks preserve symplectic 

structure; divergence-free layers restrict flows; and 

equivariant networks encode symmetries 

(translations/rotations/parity) so small datasets are 

amplified by group structure (Ma & Ma, 2023; Sánchez 

Cruz et al.,2024). 

 

Beyond state prediction, many scientific tasks 

learn operators—maps from functions to functions (e.g., 

forcing → solution). Neural operators such as the Fourier 

Neural Operator (FNO) and DeepONet learn these maps 

directly and generalize across meshes, parameters, and 

boundary conditions, providing orders-of-magnitude 

speedups for surrogate modeling and design loops (Li et 

al.,2021; Kovachki, Lanthaler, & Mishra, 2021; Lu et 
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al.,2021). Operator learning also creates a natural place 

to encode causal constraints: if we treat interventions 

(boundary changes, source terms) as inputs, the learned 

operator can be stress-tested with do-like perturbations 

and penalized when it breaks invariants or yields non-

physical counterfactuals. 

 

Small-data robustness hinges on three levers. 

First, structure priors—symmetry/equivariance; 

conservative layers; admissibility regions—shrink 

hypothesis space so we need fewer labels. Second, multi-

fidelity training couples high-accuracy but scarce 

simulations/experiments to coarse or inexpensive 

models; consistency losses tie the scales together. Third, 

active sampling targets the most informative experiments 

or simulations using acquisition functions that explicitly 

value physics residuals, uncertainty, or controllability. 

When data are truly scarce, Gaussian processes with 

physics-aware kernels or low-rank/Koopman models 

still set strong baselines; their calibrated uncertainties 

often outperform deep nets for extrapolation. 

 

OOD detection is not optional in science. 

Distribution shift appears whenever we change operating 

conditions or apply a surrogate outside its training 

envelope. Add runtime sentinels: (i) statistical detectors 

(energy-based scores, feature-space distances, density 

models), (ii) conformal prediction to produce calibrated 

prediction sets/intervals with finite-sample error 

guarantees, and (iii) physics monitors (PDE residuals, 

conservation gaps, monotonicity and positivity checks). 

The best practice is to fuse them: gate decisions on both 

uncertainty and residual; when either is high, fall back to 

a slower but trusted solver or trigger a new experiment 

(Angelopoulos & Bates, 2023; Theunissen et al.,2025; 

Zhao, Xu, & Wang, 2025). 

 

Gaps—robust small-data learning; OOD 

detection. Benchmarks still favor abundant labels or 

synthetic data that share the generator with the test set. 

We need small-N, non-i.i.d. benchmarks with 

documented physics and held-out regimes to stress causal 

and OOD claims. And we need reporting standards that 

always ship uncertainty, residual diagnostics, and 

decision rules, not just point accuracy (Wu et al.,2024). 

 

5.4. Data Standards (FAIR): Schemas, metadata, 

provenance 

The FAIR principles—Findable, Accessible, 

Interoperable, Reusable—now extend beyond datasets to 

research software and entire workflows. FAIR4RS 

reframes software as a first-class research object, 

emphasizing persistent identifiers (DOIs, ORCID), 

explicit licensing, machine-readable metadata, and 

versioned provenance so computational results can be 

reproduced and cited with the same rigor as samples or 

spectra (Barker et al.,2022). On the data side, cross-

domain practice is coalescing around a few pillars: 

• Community catalogs + schemas. For bioimaging, 

OME-NGFF/OME-Zarr delivers cloud-native 

chunked storage and common metadata that keep 

3D/5D images FAIR at scale (Moore et al.,2021, 

2023). In photon/neutron science, NeXus defines a 

shared HDF5-based schema for instruments, events, 

units, and experimental state, easing multi-facility 

analysis. In materials science, NOMAD Metainfo 

provides an extensible schema that harmonizes 

computational and experimental records; FAIRmat 

tutorials show how to author custom sections and 

parsers so lab-native formats map to open 

representations (Sbailò et al.,2022). 

• Provenance. The W3C PROV family (PROV-

DM/PROV-O) gives a standard vocabulary—

entities, activities, agents—to link raw inputs, 

processing steps, and outputs. Recent “Common 

Provenance Model” work demonstrates PROV-

aligned patterns that stitch together wet-lab, 

simulation, and analysis steps so you can audit a 

figure or a trained model end-to-end (Moreau & 

Groth, 2013; Wittner et al.,2023). 

• Packaging & exchange. RO-Crate wraps datasets, 

software, and workflows into a machine-actionable 

“crate” with JSON-LD metadata, making it trivial to 

ship complete, citable research objects between 

repos, HPC, and cloud (Soiland-Reyes et al.,2022). 

• Open benchmarks. Discipline-specific, open 

testbeds are the fastest path to shared progress: 

Matbench curates 13 materials tasks with a public 

leaderboard; the Open Catalyst datasets 

(OC20/OC22) provide massive DFT relaxations and 

energies for catalysis; and MLCommons Science is 

pushing for standardized, FAIR benchmarks and 

metadata across experimental sciences (Dunn et 

al.,2020; Tran et al.,2023; MLCommons, 2024–

2025). 

 

Gaps—cross-domain ontologies; open 

benchmarks. Most schemas are domain-siloed; cross-

walks between, say, NeXus beamline logs and NOMAD 

materials workflows, or OME metadata and reaction 

notebooks, are ad hoc. We need cross-domain ontologies 

(units, sample provenance, instrument states) and 

profiles that pin down ambiguous fields (concentration 

units; temperature ramps; uncertainty). On benchmarks, 

communities like catalysis and materials have strong 

public suites; others (electrochemistry, soft matter, 

bioassay kinetics) need open, license-clean datasets with 

defined splits, uncertainty labels, and reproducible 

baselines. 

 

5.5. Closed-Loop Labs & Automation: Active learning 

in wet/dry labs 

A closed-loop lab (a.k.a. self-driving lab) links 

experiment, simulation, and ML into a continuous cycle: 

plan → make → measure → learn → plan. In chemistry 

and materials, modern platforms combine automated 

synthesis/processing with active learning—most often 

Bayesian optimization (BO)—to explore high-

dimensional recipes with far fewer trials than grid search, 

while respecting safety and resource constraints (Tom et 
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al.,2024; Di Fiore et al.,2024). BO’s surrogate models 

(Gaussian processes, ensembles, neural operators) 

provide posterior means and uncertainty, and acquisition 

rules (expected improvement, UCB, knowledge 

gradient) trade off exploitation vs. exploration. For 

discovery problems, generative models can propose 

candidates that BO then prioritizes for synthesis, closing 

the loop between generative design and physical 

validation (Loeffler et al.,2024). 

 

In practice, durable closed loops depend on two 

under-appreciated layers. First is instrument 

interoperability. Orchestrating pumps, robots, sensors, 

and analyzers across vendors requires standard 

vocabularies and protocols. SiLA 2 (HTTP/2-based) 

exposes device capabilities as services, enabling 

discovery, control, and monitoring with consistent 

semantics; the SiLA 2 Manager demonstrates multi-

device integration in real labs (Bromig et al.,2022). At 

the protocol level, Autoprotocol and the newer 

Laboratory Automation Protocol (LAP) specify steps in 

a machine-readable way so recipes can be executed, 

versioned, and audited across sites (Anhel et al.,2023). 

Without these, active learners stall on glue code rather 

than science. Second is data plumbing: results must be 

written in FAIR formats with PROV-compatible 

provenance and RO-Crates so experiments can be 

replayed, branched, and peer-reviewed. 

 

Uncertainty-aware optimization is the other 

pillar. Scientific objectives are noisy, heteroscedastic, 

and sometimes censored (e.g., failed synthesis, no 

signal). Good loops (i) model measurement noise 

explicitly; (ii) replicate adaptively where uncertainty is 

high; (iii) incorporate constraints (toxicity, cost, process 

limits) via probabilistic feasibility models; and (iv) use 

robust BO to optimize worst-case or risk-aware 

objectives across environmental variability (Foldager et 

al.,2023). For hybrid wet/dry programs, multi-fidelity 

BO fuses fast simulations (coarse DFT, empirical 

models) with slower experiments and penalizes 

simulation bias using learned discrepancy terms. Finally, 

stopping rules should be statistical (credible gap to the 

incumbent, expected regret thresholds), not ad hoc. 

 

Gaps—instrument interoperability; 

uncertainty-aware optimization. Vendor ecosystems still 

fragment interfaces; even with SiLA 2 or 

Autoprotocol/LAP, coverage is partial and feature 

models diverge. Communities should publish capability 

profiles (what verbs a device must speak), plus reference 

implementations and conformance tests. On 

optimization, we lack benchmarks with real-world noise 

and ground-truth optima where algorithms can be 

compared fairly; many studies report one-off case studies 

without uncertainty or feasibility accounting. The way 

forward is shared open loops: simulated “digital twins” 

with tunable noise + a few physical tasks anyone can run 

(microfluidic synthesis, simple electrochemistry), all 

shipped with schemas, provenance, and leaderboards. 

 

 
Figure 6: Experiment ↔ simulation ↔ ML loop (self-driving lab template) 
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A closed-loop Design–Build–Test–Learn 

schematic showing ML proposing candidates with 

uncertainty, automated instruments executing 

experiments, and results feeding back to update 

models—exactly the flow for experiment ↔ simulation 

↔ ML with active-learning acquisition. Use this 

anatomy to annotate your stack (e.g., SiLA 

2/Autoprotocol/LAP control; FAIR metadata with 

PROV/RO-Crate; multi-fidelity simulators providing 

priors). Source (APA): Tamasi, M. J., & Gormley, A. J. 

(2022). Biologic formulation in a self-driving 

biomaterials lab. Cell Reports Physical Science, 3(9), 

101041. 

 

6. Biomedical Engineering & Biophysics 

6.1. Biomaterial–Immune Interface: Long-term 

integration 

Long-term integration of implants, scaffolds, 

and wearable/ingestible sensors is governed by the 

biomaterial–immune interface. Within minutes, a 

dynamic protein corona forms and reorganizes; within 

hours to days, neutrophils and monocyte-derived 

macrophages interrogate the surface; over weeks to 

months, fibroblasts and myofibroblasts can encapsulate 

the device and throttle mass transfer—or, if properly 

guided, promote constructive remodeling. Recent work 

shows that immuno-instructive surfaces bias 

macrophage phenotypes and limit fibrosis using 

chemistry (e.g., zwitterions, catechols), topography 

(nanoscale roughness), and controlled release of pro-

resolving mediators (Amani et al.,2024). Equally 

important, mechanobiology shapes fate: macrophages 

and fibroblasts sense stiffness and strain; stiffer or 

constrained interfaces favor pro-fibrotic activation and 

persistent foreign-body response (Ni et al.,2023). The 

design rule is therefore twofold: tune both chemical cues 

and mechanical boundary conditions to achieve durable 

integration. 

 

Scale and loading amplify failure modes. 

Micromotion, curvature, and contact forces focus 

stresses that recruit myofibroblasts and thicken capsules; 

allometric analyses suggest that small-animal successes 

may overestimate human performance unless loads and 

geometry are matched (Padmanabhan et al.,2023). 

Interface-focused solutions—such as adhesive anti-

fibrotic interlayers that conform to wet tissue and deliver 

local cues—have reduced capsule formation across 

multiple organs in vivo, pointing to interface engineering 

rather than wholesale bulk-material swaps as a pragmatic 

path to longevity (Wu et al.,2024). 

 

The persistent challenge is predictive in vitro ↔ 

in vivo correlation (IVIVC). Classical monoculture 

assays on static plastic poorly capture opsonization 

dynamics, cytokine crosstalk, and tissue mechanics. 

Organ-on-chip and organoid systems that integrate 

immune trafficking (endothelium → interstitium), 

pulsatile flow, and tunable stiffness/strain yield richer 

IVIVC for adsorption, macrophage polarization, and 

fibrotic signaling (Van Os et al.,2023). For 

comparability, reports should specify corona protocols, 

flow/shear, ECM composition and stiffness, cyclic 

strain, co-culture timing, and, when possible, paired in 

vivo readouts (capsule thickness, cell composition, 

cytokines) gathered under matched mechanics and 

surface chemistry. 

 

Gaps. (i) Validated IVIVC panels that map 

chip/organoid outputs to long-term human outcomes 

remain scarce; multi-site ring trials bridging standardized 

chips, animal models, and explant histology are overdue. 

(ii) Mechanobiology in design control is under-reported; 

submissions should include in situ stiffness, expected 

micromotion, and mitigation strategies (compliant 

interlayers, soft-hard transitions) that keep cells in pro-

resolving regimes. 

 

6.2. Targeted Delivery & Nanocarriers: Transport in 

heterogeneous tissues 

“Targeting” fails when transport fails. 

Heterogeneous interstitial flow, elevated interstitial fluid 

pressure (IFP), abnormal vasculature, and dense 

extracellular matrix (ECM) create spatially variable drug 

exposure, even for carriers that bind the right receptors. 

Tumor and inflamed-tissue mechanics—solid stress, 

matrix crosslinking, vessel compression—limit 

convection and flatten gradients (Stylianopoulos et 

al.,2018). Critically, patient-to-patient variability in 

microvascular density, IFP, and ECM architecture 

dominates outcomes; a carrier that excels in one lesion 

can underperform in another despite identical dosing 

(Tehrani et al.,2024). Multiscale models that couple 

blood flow, vessel leakiness, interstitial transport, and 

binding kinetics, seeded by imaging (DCE-MRI, CT, 

ultrasound elastography) and biopsy-derived ECM 

metrics, now support patient-specific strategies and are 

beginning to show clinical promise (Salavati et al.,2025). 

 

For nanocarriers and depots, spatiotemporal 

release must be co-designed with transport. Responsive 

chemistries (pH, redox, enzymes, hypoxia) can 

synchronize payload release to local cues, but only if 

access and residence are adequate. Modeling has 

matured from polymer-network diffusion to tissue-scale 

convection–diffusion–reaction and organ-scale PBPK 

frameworks; paired with uncertainty-aware inference 

(Bayesian calibration; discrepancy terms), these tools 

identify when to favor rapidly diffusing small molecules, 

ECM-penetrating soft nanoparticles, or pre-treatments 

(e.g., hyaluronidase, angiotensin-pathway drugs) that 

lower IFP and open transport pathways (Yoon et 

al.,2020). 

 

What to report for transferability: (i) Tissue 

mechanics (IFP, elastic modulus proxies), (ii) vascular 

metrics (perfusion, microvessel density), (iii) ECM 

descriptors (collagen/HA content and alignment), and 

(iv) single-cell exposure where feasible (mass-

spectrometry imaging, single-cell PK). With these, 
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investigators can distinguish chemistry-limited from 

transport-limited failure and quantify patient variability 

rather than treating it as noise. 

 

Gaps. (i) Widely adopted spatiotemporal 

release models that couple realistic tissue mechanics and 

binding are still rare in preclinical packages; open 

datasets with paired imaging and outcomes would 

accelerate convergence on credible models. (ii) 

Prospective handling of patient variability is uncommon; 

adaptive dosing and stratified trials guided by imaging 

surrogates of IFP/ECM are natural next steps. 

 

6.3. Point-of-Care Diagnostics: Stability, user 

variability, real-world performance 

Point-of-care (POC) diagnostics succeed only 

when analytical design and deployment realities co-

evolve. Shelf stability hinges on reagent formulation 

(lyophilization, excipients), membrane/microfluidic 

materials, and temperature/humidity robustness; in the 

field, user variability—sample collection, timing, 

interpretation—often dominates analytical differences. 

The REASSURED framework (Real-time connectivity, 

Ease of specimen collection, Affordable, Sensitive, 

Specific, User-friendly, Rapid/robust, Equipment-free, 

Delivered) reframed success metrics for low-resource 

settings (Land et al.,2019). Complementing this, WHO 

Target Product Profiles (TPPs) specify minimal/optimal 

performance and operational requirements for priority 

tests (e.g., TB), providing procurement-grade targets 

rather than lab-bench aspirations (World Health 

Organization, 2024). 

 

To advance from prototypes to regulatory-grade 

validation, follow CLSI methods: EP05 (precision across 

days/operators), EP07 (interference—hemolysis, 

lipemia, bilirubin, common drugs), EP09 (method 

comparison/bias to a reference), and EP17 (limits of 

blank/detection/quantitation). Field performance should 

then be established with prospective, consecutive-

enrollment studies that capture ambient extremes 

(heat/humidity), user training levels, and lot-to-lot 

variation. For low-resource deployments, pair clinical 

accuracy with operational metrics—failure rates, time-

to-result, connectivity uptime, and total cost per test 

(Wang et al.,2021). 

 

User variability deserves dedicated 

engineering. Build calibration-free readouts 

(ratiometric/internal controls) and error-proofing 

(sample adequacy indicators; lockouts when 

timing/temperature windows are violated). Smartphone 

readers can standardize timing, temperature logging, and 

interpretation, but must be validated against 

lighting/camera differences. For low-resource field 

trials, use REASSURED-aligned protocols with 

environmental soaks (e.g., 40–45 °C, 75–85% RH), 

dust/light exposure, transport vibration, and usability 

studies that track error modes and mitigation rates. 

Reviews from 2021–2025 emphasize that this 

deployment-centric testing often determines public-

health impact more than marginal gains in analytical 

sensitivity (Wang et al.,2021). 

 

Gaps. (i) Regulatory-grade validation beyond 

emergency use remains rare; many POC papers stop at 

accuracy against a lab assay under ideal handling. Full 

CLSI panels and TPP-anchored field studies are needed 

for credibility and procurement. (ii) Field trials in low-

resource settings that integrate environmental stress, user 

diversity, and connectivity are scarce; funders should 

require REASSURED/TPP-aligned designs and open 

reporting (protocols, de-identified datasets) to enable 

meta-analysis. 

 

7. Cross-Cutting Challenges, Policy & Roadmap 

7.1. Standards & Reproducibility: Interlab studies; 

reference materials 

Across all six domains in this review, 

reproducibility rises or falls on three pillars: (i) clear 

methods and metadata, (ii) traceable measurements, and 

(iii) interlaboratory verification. Methods are now 

scaffolded by community guidance—PRISMA 2020 for 

transparent evidence synthesis (Page et al.,2021), 

TRIPOD+AI for prediction models (Collins et al.,2024), 

and FAIR/FAIR4RS to treat datasets and research 

software as first-class, citable research objects with 

persistent identifiers, machine-readable metadata, and 

explicit licensing (Sansone et al.,2019; Barker et 

al.,2022). Traceability requires calibrations and 

reference materials; here, certified standards (e.g., NIST 

SRMs, European RMs) and ring-test materials for 

environmental chemistry, electrochemistry, and 

biomaterials anchor instrument bias and enable 

quantified measurement uncertainty to travel with 

results. Interlab reproducibility hinges on round-robins 

and proficiency testing: photovoltaic stability (ISOS) has 

shown how shared stress protocols transform anecdotal 

claims into comparable data (Khenkin et al.,2020), and 

similar exercises are feasible for membranes/fouling, 

PeLED stability, or closed-loop AOP trains. 

 

Minimum cross-domain expectations follow 

naturally: preregistered or version-controlled protocols, 

RO-Crate or PROV-O provenance that captures 

who/what/when for each transformation, and artifact 

release (code, data, CAD) under FAIR/FAIR4RS so 

others can re-run—not just re-read—your work (Soiland-

Reyes et al.,2022; Moreau & Groth, 2013). Two cultural 

gaps remain: (1) studies still under-report uncertainty 

(calibration curves, repeatability, intermediate 

precision), and (2) “methods” are treated as narrative 

rather than auditable process. Our recommendation is 

simple: choose the guideline that fits your study 

(PRISMA/TRIPOD/ISOS/IEC), pair it with 

FAIR+PROV, and insist on at least one interlab 

checkpoint before making performance claims. 
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7.2. Scale-Up & Reliability: TRL→MRL pathways; 

accelerated testing 

Promising lab results rarely fail for lack of 

cleverness—they fail at interfaces between readiness 

levels. Technology Readiness Levels (TRLs) describe 

function in relevant environments; Manufacturing 

Readiness Levels (MRLs) describe whether you can 

make it repeatably and affordably at volume (GAO, 

2020). Most academic programs stop at TRL 3–4 and 

never gate to MRL-aware plans. A practical bridge is to 

define joint exit criteria: every TRL gate must declare the 

specific design, metrology, supply chain, and quality 

controls required to achieve the corresponding MRL gate 

(GAO, 2020). 

 

Reliability evidence must also move from ad 

hoc stress to standards-anchored testing with 

documented correlations to field behavior. Photovoltaics 

rely on IEC 61215-2 (damp heat, thermal cycling, UV); 

perovskites add ISOS bias-light-temperature profiles 

(IEC, 2021; Khenkin et al.,2020). Batteries mix calendar 

and cycle-life protocols and shipping safety (UN 38.3), 

while electronics lean on JEDEC/IEC environmental 

sequences. Two rules of thumb generalize: (i) use multi-

axis stress that matches the operational ensemble 

(temperature, humidity/water, light, potential/current, 

mechanical load, impurities) rather than single-factor 

soaks; and (ii) co-report degradation signatures 

(impedance growth, defluorination, PCE retention under 

MPPT, catalyst ECSA loss, contact resistance drift) with 

uncertainty so models can learn mechanistic fingerprints 

instead of lumped fade. When accelerated testing is 

unavoidable, publish the outdoor/field ↔ accelerated 

mapping (activation energies, acceleration factors, 

failure modes) so others can reuse—not repeat—your 

work (Wheeler et al.,2022). 

 

7.3. Sustainability & Ethics: LCA/TEA integration; 

equity in deployment 

Performance claims are insufficient without 

context. Life-Cycle Assessment (LCA) and Techno-

Economic Analysis (TEA) must appear alongside 

efficacy—not as afterthoughts—using ISO-aligned 

practice for goal/scope, system boundaries, inventory, 

and impact assessment (ISO 14040/44). That applies 

from AOP trains (energy per m³, oxidant grams per m³, 

carbon cost) to perovskite PV (energy payback, lead 

stewardship), batteries (pack cradle-to-grave including 

recycling), PeLEDs (encapsulation and rare-metal 

footprints), and closed-loop labs (instrument energy, 

consumables). On the computing side, Green AI 

reframes efficiency (energy, time, hardware) as a 

research metric, asking authors to publish resource “price 

tags” alongside accuracy (Schwartz et al.,2019; 

Schwartz et al.,2020). For materials/chemistry R&D, 

Safe-and-Sustainable-by-Design provides a governance 

scaffold that blends hazard, exposure, circularity, and 

performance from the start (Caldeira et al.,2023). 

 

Equity is part of rigor, not a slogan. Water 

technologies should report performance in low-resource 

conditions (intermittent power, hot/humid environments) 

and price per m³ at realistic volumes; POC diagnostics 

should conform to REASSURED and WHO TPPs; AI-

enabled automation must address workforce impacts and 

access (Land et al.,2019; World Health Organization, 

2024). Ethical deployment demands data governance 

(consent, privacy, data sovereignty), community 

engagement, and explicit plans for affordability and 

serviceability—particularly when a device depends on 

consumables, cold chain, or proprietary software. 

 

7.4.  Policy & Certification: Bench-to-policy 

translation; incentives 

Bench-to-policy translation works when 

evidence is decision-readable. That means: (i) tests 

performed in accredited labs (ISO/IEC 17025) or under 

Good Laboratory Practice when appropriate; (ii) 

conformity assessment against recognized standards 

(e.g., IEC 61215/61730 for PV; CLSI EP series for 

diagnostics; NSF/ANSI standards for drinking-water 

components; ISO 13485 for medical-device QMS; EU 

AI Act risk-based conformity for high-risk ML); and (iii) 

registries where results can be discovered and compared. 

Incentives matter: performance-based procurement, 

milestone-based grants that tie funding to TRL→MRL 

gates, and extended producer responsibility for end-of-

life recovery create pull for reliable, sustainable 

products. Finally, regulators and funders can accelerate 

uptake by endorsing open testbeds and benchmarks (e.g., 

Matbench; Open Catalyst) and by recognizing 

FAIR/FAIR4RS compliance in review criteria (Dunn et 

al.,2020; Tran et al.,2023; Barker et al.,2022). 
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